STATISTICAL SOLUTION OF INVERSE PROBLEMS

Helcio R. B. Orlande

Department of Mechanical Engineering, DEM/PEM Escola Politécnica/COPPE Federal University of Rio de Janeiro, UFRJ Cid. Universitária, Cx. Postal: 68503 Rio de Janeiro, RJ, 21941-972 Brazil helcio@mecanica.coppe.ufrj.br

MAXIMUM LIKELIHOOD OBJECTIVE FUNCTION

$$S_{ML}(\mathbf{P}) = \left[\mathbf{Y} - \mathbf{T}(\mathbf{P})\right]^T \mathbf{W} \left[\mathbf{Y} - \mathbf{T}(\mathbf{P})\right]$$

- where P = vector of unknown parameters Y = vector of measured temperatures T(P) = vector of estimated temperatures W = Inverse of the covariance matrix of the
 - \mathbf{W} = Inverse of the covariance matrix of the measurements

THE LEVENBERG-MARQUARDT METHOD

$$\mathbf{P}^{k+1} = \mathbf{P}^{k} + [\mathbf{J}^{T}\mathbf{W}\mathbf{J} + \lambda^{k}\mathbf{\Omega}^{k}]^{-1}\mathbf{J}^{T}\mathbf{W}[\mathbf{Y} - \mathbf{T}(\mathbf{P}^{k})]$$

where λ^k is the *damping parameter* and Ω^k is a *diagonal matrix*.

- The Levenberg-Marquardt Method is related to *Tikhonov's regularization* approach.
- Compromise between steepest-descent method and Gauss' method.
- Simple, powerful and straightforward iterative procedure.
- Capable of treating complex physical situations.
- Easy to program.
- Stable and converges fast.

<u>Remark</u>: With the statistical hypotheses described above, the minimization of the least-squares norm yields *maximum likelihood* estimates, that is, the values estimated for the unknown parameters \mathbf{P} are those most likely to produce the measured data \mathbf{Y} .

<u>Remark</u>: Although very popular and useful in many situations, the minimization of the least-squares norm is a non-Bayesian estimator. A Bayesian estimator is basically concerned with the analysis of the *posterior probability density*, which is the conditional probability of the parameters **P** given the measurements **Y**.

BAYES' FORMULA

$$\pi_{posterior}(\mathbf{P}) = \pi(\mathbf{P} | \mathbf{Y}) = \frac{\pi_{prior}(\mathbf{P})\pi(\mathbf{Y} | \mathbf{P})}{\pi(\mathbf{Y})}$$

Where: $\pi_{\text{posterior}}(\mathbf{P}) = \text{posterior probability density (conditional probability of the parameters <math>\mathbf{P}$ given the measurements \mathbf{Y}) $\pi_{\text{prior}}(\mathbf{P}) = \text{prior density (information about the parameters prior to the measurements)}$ $\pi(\mathbf{Y}|\mathbf{P}) = \text{likelihood function (expresses the likelihood of different measurement outcomes } \mathbf{Y} \text{ with } \mathbf{P} \text{ given})$ $\pi(\mathbf{Y}) = \text{probability density of the measurements (normalizing constant)}$

posterior \propto prior x likelihood

The **statistical inversion approach** is based on the following principles:

- 1. All variables included in the model are modeled as random variables.
- 2. The randomness describes our degree of information concerning their realizations.
- 3. The degree of information concerning these values is coded in the probability distributions.
- 4. The solution of the inverse problem is the posterior probability distribution.

• Jari P. Kaipio and Erkki Somersalo, *Computational and Statistical Methods for Inverse Problems*, Springer, 2004.

• S. Tan, C. Fox, G. Nicholls, *Inverse Problems*, Course Notes for Physics 707, University of Auckland

➢ <u>Heat Flux:</u> q(t) ➢ <u>Thermal Conductivity:</u> $k(T) = B_1 + B_2 e^{-T/B_3}$ ➢ <u>Volumetric Heat Capacity:</u> $C(T) = A_1 + A_2 e^{-T/A_3}$

$$\mathbf{P} = [q_1, q_2, \dots, q_I, A_1, A_2, A_3, B_1, B_2, B_3]$$

<u>Hypotheses:</u> {	 The errors are additive, with zero mean and normally distributed. The statistical parameters describing the errors are known. There are no errors in the independent variables. P is a random vector with known mean µ and known covariance matrix V. P is distributed normally and is independent of Y.
----------------------	--

Likelihood

$$\pi(\mathbf{Y}|\mathbf{P}) = (2\pi)^{-I/2} |\mathbf{W}^{-1}|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{Y} - \mathbf{T})^T \mathbf{W}(\mathbf{Y} - \mathbf{T})\right]$$

where I = number of observations W = inverse of the covariance matrix of the measurements

—

For uncorrelated measurements:
$$\mathbf{W} = \begin{bmatrix} 1/\sigma_1^2 & 0 \\ & 1/\sigma_2^2 \\ & \ddots \\ 0 & 1/\sigma_I^2 \end{bmatrix}$$

Normal Prior

$$\pi(\mathbf{P}) = (2\pi)^{-N/2} \left| \mathbf{V} \right|^{-1/2} \exp \left[-\frac{1}{2} (\mathbf{P} - \boldsymbol{\mu})^T \mathbf{V}^{-1} (\mathbf{P} - \boldsymbol{\mu}) \right]$$

where N = number of parameters $\mu =$ known mean for **P V** = known covariance matrix for **P**

Bayes' Formula:

$$\pi_{posterior}(\mathbf{P}) = \pi(\mathbf{P}|\mathbf{Y}) \propto \pi_{prior}(\mathbf{P})\pi(\mathbf{Y}|\mathbf{P})$$

$$\ln\left[\pi(\mathbf{P} \mid \mathbf{Y})\right] = -\frac{1}{2}\left[(I+N)\ln 2\pi + \ln\left|\mathbf{W}^{-1}\right| + \ln\left|\mathbf{V}\right| + S_{MAP}\right]$$

Maximum a Posteriori Objective Function

$$S_{MAP}(\mathbf{P}) = \left[\mathbf{Y} - \mathbf{T}(\mathbf{P})\right]^T \mathbf{W} \left[\mathbf{Y} - \mathbf{T}(\mathbf{P})\right] + \left(\mu - \mathbf{P}\right)^T \mathbf{V}^{-1}(\mu - \mathbf{P})$$

For the minimization of $S_{MAP}(\mathbf{P})$: $\frac{\partial S_{MAP}(\mathbf{P})}{\partial P_1} = \frac{\partial S_{MAP}(\mathbf{P})}{\partial P_2} = \dots = \frac{\partial S_{MAP}(\mathbf{P})}{\partial P_N} = 0$ $-2 \mathbf{J}^T \mathbf{W} [\mathbf{Y} - \mathbf{T}(\mathbf{P})] - 2 \mathbf{V}^{-1} [\boldsymbol{\mu} - \mathbf{P}] = 0$

where **J** is the <u>Sensitivity Matrix</u>.

$$-2\mathbf{J}^T\mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})] - 2\mathbf{V}^{-1}[\boldsymbol{\mu}-\mathbf{P}] = 0$$

Linear Problems: J does not depend on P \implies T(P) = J P

$$\mathbf{P} = [\mathbf{J}^T \mathbf{W} \mathbf{J} + \mathbf{V}^{-1}]^{-1} [\mathbf{J}^T \mathbf{W} \mathbf{Y} + \mathbf{V}^{-1} \boldsymbol{\mu}]$$

Nonlinear Problems: $\mathbf{J} \equiv \mathbf{J}(\mathbf{P}) \implies \mathbf{T}(\mathbf{P}) = \mathbf{T}(\mathbf{P}^k) + \mathbf{J}^k (\mathbf{P} - \mathbf{P}^k)$

$$\mathbf{P}^{k+1} = \mathbf{P}^k + [\mathbf{J}^T \mathbf{W} \mathbf{J} + \mathbf{V}^{-1}]^{-1} \{\mathbf{J}^T \mathbf{W} [\mathbf{Y} - \mathbf{T} (\mathbf{P}^k)] + \mathbf{V}^{-1} (\boldsymbol{\mu} - \mathbf{P}^k)\}$$

SEQUENTIAL PARAMETER ESTIMATION TECHNIQUE

- Utilizes the measurements in a sequential manner in order to estimate the parameters.
- Avoids matrix inversions.
- Permits the identification of improper mathematical models.
- Possible to identify if a sufficient number of transient measurements and if a sufficiently long experimental time have been used in the experiment.

<u>COMPUTATIONAL ALGORITHM FOR THE</u> <u>NONLINEAR CASE</u>

Step 1. Initialize the iterative procedure by setting the iteration index *k* to 0 and making $\mathbf{P}^0 = \mu$.

Step 2. Compute the estimate for the vector of unknown parameters sequentially, for *i*=0,...,(*I*-1), by using $A = V_i J_{i+1}^T$ $\Delta = J_{i+1} A + W_{i+1}^{-1}$ $K = A \Delta^{-1}$ $E_{i+1} = Y_{i+1} - T_{i+1} (\mathbf{P}^k)$ $P_{i+1}^{k+1} = \mathbf{P}_i^{k+1} + \mathbf{K} [E_{i+1} - \mathbf{J}_{i+1} (\mathbf{P}_i^{k+1} - \mathbf{P}^k)]$ $V_{i+1} = V_i - \mathbf{K} \mathbf{J}_{i+1} \mathbf{V}_i$

COMPUTATIONAL ALGORITHM FOR THE NONLINEAR CASE

Step 3. Check convergence of the values estimated sequentially with all I measurements

 $\left\| \mathbf{P}_{I}^{k+1} - \mathbf{P}_{I}^{k} \right\| < \varepsilon$

If the convergence criterion is not satisfied, increment k, make

 $\mathbf{P}^k = \mathbf{P}_I^k$

and return to step 2.

SAMPLED SOLUTIONS TO INVERSE PROBLEMS

- In many cases, the Posterior Probability Distribution is analytically intractable, p. ex., if the prior probability distribution involves information which is difficult to express in analytic terms.
- Draw samples from the set Ω of all possible **P**'s, each sample with probability $\pi(\mathbf{P}|\mathbf{Y})$.
- Get a set $\Theta = \{\mathbf{P}_1, \mathbf{P}_2, ..., \mathbf{P}_M\}$ of samples distributed like the posterior distribution.
- Inference on $\pi(\mathbf{P}|\mathbf{Y})$ becomes inference on $\Theta = \{\mathbf{P}_1, \mathbf{P}_2, ..., \mathbf{P}_M\}$, for example the mean of the samples in Θ give us an estimation of the average values of $\pi(\mathbf{P}|\mathbf{Y})$.
- We generally need the constant that normalizes the probability distribution to sample: MARKOV CHAIN MONTE-CARLO METHODS

4. MARKOV CHAIN MONTE CARLO METHODS

METROPOLIS-HASTINGS ALGORITHM

- 1. Sample a *Candidate Point* \mathbf{P}^* from a jumping distribution $q(\mathbf{P}^*, \mathbf{P}^{(t-1)})$.
- 2. Calculate: $\alpha = \min\left[1, \frac{\pi(\mathbf{P}^* \mid \mathbf{Y}) q(\mathbf{P}^{(t-1)}, \mathbf{P}^*)}{\pi(\mathbf{P}^{(t-1)} \mid \mathbf{Y}) q(\mathbf{P}^*, \mathbf{P}^{(t-1)})}\right]$
- 3. Generate a random value U which is uniformly distributed on (0,1).
- 4. If $U \le \alpha$, define $\mathbf{P}^{(t)} = \mathbf{P}^*$; otherwise, define $\mathbf{P}^{(t)} = \mathbf{P}^{(t-1)}$.
- 5. Return to step 1 in order to generate the sequence $\{\mathbf{P}^{(1)}, \mathbf{P}^{(2)}, ..., \mathbf{P}^{(n)}\}$.

<u>Remark</u>: Ignore $\mathbf{P}^{(i)}$ until the chain has reached equilibrium.

$$T(x,t) = T_0 \operatorname{erf}\left(\frac{x}{\sqrt{4\alpha t}}\right)$$

 $T_0 = 50 \text{ °C}$ <u>Concrete:</u> $\alpha = 4.9 \text{ x } 10^{-7} \text{ m}^2/\text{s}$

- Estimation of α .
- Prior for α : Uniform distribution (10⁻⁷,10⁻⁵) m²/s.
- Start the chain in the middle of the interval.

- Simultaneous estimation of T_0 and α .
- Prior for T₀ : Uniform distribution (40, 65) °C
- Prior for α : Uniform distribution (10⁻⁷, 10⁻⁵) m²/s
- Start the chain in the middle of the intervals

	Diffusivity/Exact	Temperature/Exact
Mean	0.991879086	1.003147487
Standard-Deviation	0.030681073	0.009687663

$$C(T)\frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[k(T)\frac{\partial T}{\partial x} \right]$$
$$T = T_0(t)$$
$$k(T)\frac{\partial T}{\partial x} = q(t)$$
$$T = T_{ini}$$

- in 0 < x < L, t > 0
- at x = 0, t > 0
- at x = L, t > 0
- for t = 0, in 0 < x < L

Temperatura (°C)

PROPRIEDADES TERMOFÍSICA DO MATERIAL

Equações e parâmetros das curvas ajustadas para as propriedades termofísicas.

 $C(T) = A_1 + A_2 e^{-T/A_3}$

 $k(T)=B_1+B_2e^{-T/B_3}$

Propriedade	Parâmetros	Desvio Padrão
Conceidada	A1= 5.681.006 J/m ³ .°C	163.262 J/m ³ .°C
térmica	A2= -4.813.057 J/m ³ .°C	171.948 J/m ³ .°C
volumetrica	A3= 547,00 °C	71,42 °C
	B1= 24,52 W/m°C	2,79 W/m°C
Condutividade Térmica	B2= 183,05 W/m°C	5,22 W/m°C
	B3= 277,00 °C	20,24 °C

Estes dados serão utilizados como informação a priori das propriedades termofísicas.

Formulação Matemática

Para se determinar a função conjugada de probabilidades a *priori* $p(\mathbf{P})$ devemos primeiro defini-la para cada parâmetro a ser estimado. Assim, para o problema em questão, temos:

Para o fluxo de calor:
$$\pi(\mathbf{q}) \propto \alpha^{I/2} \exp\left\{-\frac{1}{2}\alpha\sqrt{\mathbf{q}^T \mathbf{Z} \mathbf{q}}\right\}$$
Onde *I* é dimensão de q e α é um parâmetro escalar de regularização.

Para as propriedades termofísicas:

$$\pi(\mathbf{A}) \propto \exp\left[-(\mathbf{A} - \boldsymbol{\mu}_A)^T \mathbf{W}_A (\mathbf{A} - \boldsymbol{\mu}_A)\right]$$

$$\tau(\mathbf{B}) \propto \exp\left[-(\mathbf{B}-\mathbf{\mu}_B)^T \mathbf{W}_B(\mathbf{B}-\mathbf{\mu}_B)\right]$$

$$\begin{bmatrix} \mathbf{Z} = \mathbf{D}^T \mathbf{D} \\ \mathbf{D} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ & \ddots & & \vdots \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} A_1, A_2, A_3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} B_1, B_2, B_3 \end{bmatrix}$$
$$\mathbf{\mu}_A = \begin{bmatrix} \mu_{A_1}, \mu_{A_2}, \mu_{A_3} \end{bmatrix} \qquad \mathbf{\mu}_B = \begin{bmatrix} \mu_{B_1}, \mu_{B_2}, \mu_{B_3} \end{bmatrix}$$
$$\mathbf{W}_A = \begin{bmatrix} 1/\sigma_{A_1}^2 & 0 & 0 \\ 0 & 1/\sigma_{A_2}^2 & 0 \\ 0 & 0 & 1/\sigma_{A_3}^2 \end{bmatrix} \qquad \mathbf{W}_B = \begin{bmatrix} 1/\sigma_{B_1}^2 & 0 & 0 \\ 0 & 1/\sigma_{B_2}^2 & 0 \\ 0 & 0 & 1/\sigma_{B_3}^2 \end{bmatrix}$$

Assim, temos a seguinte função densidade de probabilidade a *posteriori* (PPDF):

 $\pi(\mathbf{P} \mid \mathbf{Y}) \propto \pi(\mathbf{Y} \mid \mathbf{P}) \pi(\mathbf{P})$

$$\pi(\mathbf{q}, \mathbf{A}, \mathbf{B} | \mathbf{Y}) \propto \exp\left\{-\frac{\left[\left(\mathbf{Y} - \mathbf{T}(\mathbf{q}, \mathbf{A}, \mathbf{B})\right]^{T}\left[\left(\mathbf{Y} - \mathbf{T}(\mathbf{q}, \mathbf{A}, \mathbf{B})\right]\right]}{2\sigma^{2}}\right\} \times \exp\left[-\frac{1}{2}\alpha \sqrt{\mathbf{q}^{T} Z \mathbf{q}}\right] \exp\left[-\left(\mathbf{A} - \boldsymbol{\mu}_{A}\right)^{T} \mathbf{W}_{A} (\mathbf{A} - \boldsymbol{\mu}_{A})\right] \exp\left[-\left(\mathbf{B} - \boldsymbol{\mu}_{B}\right)^{T} \mathbf{W}_{B} (\mathbf{B} - \boldsymbol{\mu}_{B})\right]$$

RESULTADOS E DISCUSSÕES

EXPERIMENTO SIMULADO

Teste de desempenho dos métodos de Gauss-MAP e MCMC (Markov Chain Monte Carlo)

- Impôs-se uma função fluxo de calor de forma e magnitude previamente conhecida no contorno quente da amostra.
- No contorno frio impôs-se uma temperatura fixa igual à condição inicial. $T_L = T_0 = 25^{\circ}C$
- Obtenção dos dados experimentais de temperatura simulados.
- Problema Inverso
- Partindo dos dados experimentais simulados, estimar a função fluxo de calor original.
- No contorno frio impôs-se uma temperatura fixa igual à condição inicial. $T_L = T_0 = 25^{\circ}C$
- Estimativa inicial do fluxo imposto pobre ou pouco informativa.

Problema Direto

RESULTADOS E DISCUSSÕES

EXPERIMENTO SIMULADO

Função fluxo de calor exato e informação a priori do fluxo de calor

RESULTADOS E DISCUSSÕES

EXPERIMENTO SIMULADO

A função de auto-covariância (ACF)

 $C_{ff} \equiv \operatorname{cov}(f(\mathbf{P}_n), f(\mathbf{P}_{(n+s)}))$

$$\rho_{ff}(s) = C_{ff}(s) / C_{ff}(0) = C_{ff}(s) / \operatorname{var}(f)$$

Tempo de Auto-covariância

RESULTADOS E DISCUSSÕES Resultados com o método MCMC-MH

Estudo do IACT e da taxa de aceitação em função de α .

RESULTADOS E DISCUSSÕES Resultados com o método MCMC-MH

Funções de covariância normalizada para o valor ótimo de α .

Temperatura (C)

Resultados do experimento 1R1 – Propriedades

Resultados do experimento 1R1 – Fluxo e Resíduos

Temperatura (C)

Temperatura (°C)

Resultados do experimento 2R1 – Propriedades

 $x_{PM} \pm 2.576 \text{ std}(\pi(x \mid y))$ Fluxo de calor- Exp2R1 х 10⁵ 6 FluxoPM+delta 99% (W/m²) 5 FluxoPM FluxoPM-delta ² x10^5) 4 3 æ conf. q(t) (W/m 2 ф e int. 1 q(t)-dq(t)q(t) Fluxo **GAUSS-MAP** 0 q(t)+dq(t)**MCMC-MH** -20 0 20 40 60 80 100 120 140 160 180 200 0 20 80 100 Ő. 40 60 120 140 160 180 Tempo (s) Tempo (s) Resíduos nos locais dos sensores 1 e 2 8 Resíduos- Exp2R1 10 6 4 5 2 0 0 Resíduos °C £ -2 Resíduos -4 Resíduos Sensor1(2mm) -5 Resíduos Sensor 2(5mm) -6 Sensor 1 -8 Sensor 2 -10 -10 20 80 -20 0 40 60 100 120 140 160 180 200 -15 Ó. 20 40 60 80 100 120 140 160 180 Tempo (s) Tempo (s)

Resultados do experimento 2R1 – Fluxo e Resíduos

Resultados do experimento 3R1 – Propriedades

Resultados do experimento 3R1 - Fluxo e Resíduos

5. INTERPOLATION OF THE LIKELIHOOD FUNCTION

$$f(\mathbf{x}) = \sum_{j=1}^{N} \alpha_{j} \phi(|\mathbf{x} - \mathbf{x}_{j}|) + \sum_{k=1}^{M} \sum_{i=1}^{L} \beta_{i,k} p_{k}(x_{i}) + \beta_{0}$$

 $p_k(x_i)$ is one of the *M* terms of a given basis of polynomials

5. INTERPOLATION OF THE LIKELIHOOD FUNCTION

RADIAL BASIS FUNCTIONS

Multiquadrics:
$$\phi(|\mathbf{x}_i - \mathbf{x}_j|) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^2 + c_j^2}$$

Squared multiquadrics:
$$\phi(|\mathbf{x}_i - \mathbf{x}_j|) = (\mathbf{x}_i - \mathbf{x}_j)^2 + c_j^2$$

Gaussian:
$$\phi(|\mathbf{x}_i - \mathbf{x}_j|) = \exp\left[-c_j^2(\mathbf{x}_i - \mathbf{x}_j)^2\right]$$

Cubical multiquadrics:
$$\phi(|\mathbf{x}_i - \mathbf{x}_j|) = \left[\sqrt{(\mathbf{x}_i - \mathbf{x}_j)^2 + c_j^2}\right]^3$$

- Automatic selection of the best interpolating function
- Cross-validation procedure
- Polynomials up to degree 6 without crossed terms

$$R\frac{\partial c(z,t)}{\partial t} = D\frac{\partial^2 c(z,t)}{\partial z^2} - V\frac{\partial c(z,t)}{\partial z}$$
$$Q(2^{\circ}0) = C^{\circ}$$

 $c(0,t) = C_0$

$$D\frac{\partial c(L,t)}{\partial z} + h_m c(L,t) = h_m C_b$$

for 0 < z < L and t > 0

for
$$t = 0$$
 in $0 < z < L$

at
$$z = 0$$
 for $t > 0$

at
$$z = L$$
 for $t > 0$

$$\mathbf{P^{T}} = [D, R, h_{m}, V]$$

- Errors in the measured variables are additive, uncorrelated, normally distributed, with zero mean and known constant standard-deviation
- Simulated experimental data: constant standard-deviation of 0.05
- Column with length L = 5.4 cm
- R = 14.4
- $D = 11.08 \text{ cm}^2/\text{min}$
- $h_m = 0.39$ cm/min
- V = 0.59 cm/min
- 90 measurements of the outflow concentration
- Number of samples: 20000
- Prior information: uniform distribution

 $9 \le R \le 20$ $9 \text{ cm}^2/\text{min} \le D \le 20 \text{ cm}^2/\text{min}$ $0.3 \text{ cm/min} \le h_m \le 0.6 \text{ cm/min}$ $0.58 \text{ cm/min} \le V \le 0.60 \text{ cm/min}$

$9 \leq R \leq 20$

 $9 \text{ cm}^2/\text{min} \le D \le 20 \text{ cm}^2/\text{min}$ $0.3 \text{ cm}/\text{min} \le h_m \le 0.6 \text{ cm}/\text{min}$

 $0.58 \text{ cm/min} \le V \le 0.60 \text{ cm/min}$

Technique 1: Without interpolation

Parameter	Mean	Standard-Deviation
R	16.7	1.9
D (cm ² /min).	12.7	1.5
h_m (cm/min)	0.50	0.06
V (cm/min)	0.59	0.01

• R = 14.4• $D = 11.08 \text{ cm}^2/\text{min}$ • $h_m = 0.39 \text{ cm}/\text{min}$ • V = 0.59 cm/min

Technique 2: Interpolation with Multiquadrics RBFs

Parameter	Mean	Standard- Deviation	Number of Interpolating Points
R	18.3	2.2	300
D (cm ² /min).	14.7	1.6	
h_m (cm/min)	0.57	0.03	
V (cm/min)	0.58	0.01	
R	18.9	0.7	500
D (cm ² /min).	15.2	0.7	
h_m (cm/min)	0.57	0.03	
V (cm/min)	0.59	0.01	

• *R* = 14.4

- $D = 11.08 \text{ cm}^2/\text{min}$
- $h_m = 0.39 \text{ cm/min}$
- V = 0.59 cm/min

Technique 3: Iterpolation with RBFs using the cross-validation procedure

Parameter	Mean	Standard- Deviation	Number of Interpolating Points
R	16.4	1.9	300
D (cm ² /min).	12.6	1.7	
h_m (cm/min)	0.41	0.06	
V (cm/min)	0.58	0.01	
R	17.4	2.0	500
D (cm ² /min).	13.4	1.7]
h_m (cm/min)	0.47	0.07]
V (cm/min)	0.59	0.01	

• *R* = 14.4

- $D = 11.08 \text{ cm}^2/\text{min}$
- $h_m = 0.39 \text{ cm/min}$
- V = 0.59 cm/min

Technique 1: Without interpolation

Technique 3: Iterpolation with RBFs using the cross-validation procedure

Technique 1: Without interpolation

Technique 2: Interpolation with Multiquadrics RBFs

Technique 3: Iterpolation with RBFs using the cross-validation procedure

ACKNOWLEDGEMENTS

- Prof. Gloria Frontini and the hospitality of UNMDP
- Carlos Alberto de Alencar Mota
- M. D. Mikhailov, R. M. Cotta and M. Colaço
- CNPq-PROSUL, CAPES and FAPERJ

Para non hablar que non me gusta el futebol de Argentina...