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1. MOTIVATION

� Design the heat-shield for SARA Satellite - Brazilian Space 

Agency
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1. MOTIVATION

� Tragic accident with the Brazilian Satellite Launcher Vehicle

� August 22, 2003

� 21 Engineers and Technicians dead
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2. PHYSICAL PROBLEM AND

MATHEMATICAL FORMULATION
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2. PHYSICAL PROBLEM AND

MATHEMATICAL FORMULATION
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DIRECT PROBLEM

Known

• Boundary and initial conditions

• Thermophysical properties

Determine

• Temperature distribution

T(x,t)

INVERSE PROBLEM

Known

• Initial condition

• Boundary condition at x = 0

• Thermophysical properties

• Temperature measurements

Estimate

q(t) 

3. DIRECT PROBLEM AND INVERSE PROBLEM
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PARAMETER ESTIMATION
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The unknown function q(t) is approximated as:

where: Cj(t) are known basis functions

N is the number of basis functions used in 

the  approximation (known for the analysis)

Pj are the unknown parameters
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FUNCTION ESTIMATION

• No assumption is made regarding the functional form of the 

unknown.

• Minimization is performed in an infinite dimensional space of 

functions, or minimization is performed in a finite dimensional 

space where N is large, e.g., Cj(t) = δ(ti), i = 1,...,I, N = I.

I = Number of measurements

N = Number of unknown parameters
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FUNCTION ESTIMATION

t

q(t)

ti+1ti
ti-1

q(ti+1)

q(ti)

q(ti-1)

Pj

Pj-1

Pj+1 ≡

≡

≡



11

AN OVERVIEW OF SOLUTION TECHNIQUES 

FOR INVERSE HEAT TRANSFER PROBLEMS

Remark: If the inverse heat transfer problem involves the estimation of 

only few unknown parameters from transient temperature measurements, 

the use of the ordinary least squares norm can be stable.  However, if the 

inverse problem involves the estimation of a large number of parameters, 

such as the recovery of the unknown transient heat flux q(ti) at times t
i
, 

i=1,…,I, excursion and oscillation of the solution may occur. In this case, 

regularization (or stabilization) techniques are required.
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AN OVERVIEW OF SOLUTION TECHNIQUES 

FOR INVERSE HEAT TRANSFER PROBLEMS

Tikhonov’s Whole-Domain Regularization

Zeroth order:

First order:

� α0 and α1 are the regularization parameters.
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AN OVERVIEW OF SOLUTION TECHNIQUES 

FOR INVERSE HEAT TRANSFER PROBLEMS

Beck’s Sequential Function Specification Technique 

� Regularization is obtained from the least-squares averaging capabilities 

and from the measurements taken at future time steps.
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where r is the number of future measurements
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AN OVERVIEW OF SOLUTION TECHNIQUES 

FOR INVERSE HEAT TRANSFER PROBLEMS
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AN OVERVIEW OF SOLUTION TECHNIQUES 

FOR INVERSE HEAT TRANSFER PROBLEMS

Alifanov’s Iterative Regularization 

� Regularization is obtained from the stopping criterion utilized for the 

iterative procedure.
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4. METHOS OF SOLUTION FOR THE 

INVERSE PROBLEM

PARAMETER ESTIMATION

� Constant Heat Flux: q(t) = q
0

� Requires accurate knowledge of initial time

� Statistical Hypotheses:

- measurement errors are additive, uncorrelated, 

normally distributed, with zero mean and 

known constant standard-deviation;

- only the measured variables contain errors;

- there is no prior information regarding the values 

and uncertainties of the unknown parameters
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4. METHOS OF SOLUTION FOR THE 

INVERSE PROBLEM

PARAMETER ESTIMATION

Minimization of: )]([)]([)( PTYPTYP −−= T
OLSS

Levenberg-Marquardt’s Method

])([1)(1 kTkkTkk PTYJJJPP −−++=+ ΩΩΩΩµ

where: P = [q
0
]

J is the sensitivity matrix,

ΩΩΩΩk is a diagonal matrix

µk is a scalar named damping parameter
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SENSITIVITY MATRIX AND

SENSITIVITY COEFFICIENTS
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4. METHOS OF SOLUTION FOR THE 

INVERSE PROBLEM

FUNCTION ESTIMATION

Minimization of: 

� No a priori assumption regarding the functional form of the unknown. 

� Hilbert space of square integrable functions in the domain 0 < t < t
f
:
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where: Ym(t) = measured temperatures

Tm[t;q(t)] = estimated temperatures

M = number of sensors

tf = final time
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Direction of Descent:

Conjugation Coefficient:

(Fletcher-Reeves)

Gradient Direction

and

Search step size β k Sensitivity Problem

and

Adjoint Problem

Iterative Procedure:

CONJUGATE GRADIENT METHOD
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SENSITIVITY PROBLEM

q(t) is perturbed by ε∆q(t) T(x,t) undergoes a variation ε∆T(x,t)

Because of non-linearities:
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SENSITIVITY PROBLEM
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where D[qε(t)] is the operator form of the direct problem written for the perturbed quantities. 
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SEARCH STEP SIZE
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where ∆T[xm,t;dk(t)] is the solution of the sensitivity problem obtained by setting ∆q(t) = dk(t).
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Lagrange multiplier λ(x,t)

ADJOINT PROBLEM
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ADJOINT PROBLEM
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ADJOINT PROBLEM
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GRADIENT EQUATION
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� Errorless measurements: ε is a small specified number

� Measurements containing random errors: Discrepancy Principle

(iterative regularization)

STOPPING CRITERION
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5. EXPERIMENTAL SETUP
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5. EXPERIMENTAL SETUP

� ASTM standard E285-80

1
3

2

5
4

1- Sample and refractory support

2– Heat shield

3– Oxy-acetylene torch

1

2

1
3
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5. EXPERIMENTAL SETUP

� Cylindrical sample: Diameter and Thickness = 20 mm

� 20 scfh for oxygen and for acetylene 

� 4 calibrated thermocouples type K, 30 gauge (0.25 mm diameter wires) 

Sensor 1: 2 mm below the heated surface

Sensor 2: 5 mm below the heated surface

Sensor 3: 10 mm below the heated surface

Sensor 4: 20 mm below the heated surface (non-heated boundary)

� AGILENT 34970A data acquisition system: 1 measurement per second per sensor

� High-quality graphite used in rocket nozzles

� Graphite thermophysical properties from the manufacturer and from tests in a Flash 

Method Apparatus (NETZSCH LFA-447)
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5. EXPERIMENTAL SETUP
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6. RESULTS AND DISCUSSIONS

SAMPLE 1 SAMPLE 2
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6. RESULTS AND DISCUSSIONS
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6. RESULTS AND DISCUSSIONS
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6. RESULTS AND DISCUSSIONS

� Parameter Estimation

Large and Correlated Residuals

Residual = Y(t) – T(t)



6. RESULTS AND DISCUSSIONS

� Function Estimation

� Simulated Measurements
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6. RESULTS AND DISCUSSIONS

Sample 2 - Distance to the sample = 200 mm

Sensor 3 used as BC – Final Time = 200 s
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