Estimación de la Distribución de Tamaños de Partículas Submicrométricas de Látex por Técnicas Ópticas

Luis M. Gugliotta, Georgina S. Stegmayer, Jorge R. Vega

Santa Fe (ARGENTINA)

Septiembre de 2007

Universidad Nacional del Litoral CONICET

Universidad Tecnológica Nacional Facultad Regional Santa Fe

MOTIVACIÓN

Proceso de Polimerización

DISTRIBUCIÓN DE TAMAÑOS DE PARTÍCULAS (PSD)

Variable indicativa de CALIDAD en: Pinturas, Adhesivos, Tintas, Recubrimientos, Etc.

Importancia de la PSD de un Látex

Relación de la PSD con las propiedades de uso final del látex

- Comportamiento reológico del látex (viscosidad)
- Estabilidad a la coagulación
- Temperatura de formación del "film" (MFT)
- Características del "film" (permeabilidad a gases y humedad, transparencia / opacidad).
- > Información de la PSD sobre parámetros de la reacción
 - * Constantes cinéticas y velocidad de polimerización,
 - ✤ Reacciones que determinan la macroestructura molecular.

PSD: Normalmente: D < 1000 nm

La PSD y sus Diámetros Medios

Diámetros medios

$$\overline{D}_{a,b} = \begin{bmatrix} \sum_{i=1}^{N} f(D_i) D_i^a \\ \frac{\sum_{i=1}^{N} f(D_i) D_i^b}{\sum_{i=1}^{N} f(D_i) D_i^b} \end{bmatrix}^{\frac{1}{a-b}}$$

$$a, b = 0, 1, 2, 3; a > b$$

 $D_{1,0}$: Diámetro medio en número $\overline{D}_{3,2}$: Diámetro medio en superficie $\overline{D}_{4,3}$: Diámetro medio en peso

Clasificación de Técnicas de Medición de PSDs

2) Dispersión de Luz

3) Fraccionamiento

1) Observación Directa Microscopías de transmisión (TEM) Microscopías de barrido (SEM) { Dinámica (DLS, QELS, PCS)
 Elástica (ELS)
 Turbidimetría (T)

Flujo (FFFF)

Campo + Flujo (FFF) Eléctrico (EFFF) Sedimenteció (C Sedimentación (SFFF)

Sedimentación Centrífuga de Disco (DC) Ultracentrifugación (UC)

Otras: Electroforesis, Electroacústica

Microscópía Electrónica (TEM, SEM)

Micrografía SEM: Látex PS Monodisperso

Micrografías TEM: Morfologías externas

DESVENTAJAS

VENTAJA

Permite la observación directa de la PSD Cara – Lenta – Deformación y Contracción de partículas – Dificultad de Muestreo – Dificultad para medir partículas blandas

Fraccionamiento Hidrodinámico Capilar (CDHF)

- Fraccionamiento por tamaños (debido a diferencia de velocidades de las partículas que fluyen en un tubo capilar)
- ✤ Las partículas más grandes eluyen antes que las más pequeñas.

TÉCNICAS ÓPTICAS

Modelos de Medición y Problemas Inversos

Dispersión de Luz Dinámica (DLS)
Dispersión de Luz Elástica (ELS)
Turbidimetría (T)

El Problema de las Técnicas Ópticas

Inconveniente PSD diferentes originan mediciones similares

Problema Inverso MAL CONDICIONADO

El Modelo de Medición

Modelo Continuo (Integral de Fredholm)

$$y(t) = \int_0^\infty g(t, D) f(D) dD$$
MEDICIÓN
Kernel
(Teoría de Mie)

DLS: y = Función de autocorrelación de la luz dispersada t = tiempo de retardo de la correlación

- ELS: *y* = Intensidad de la luz dispersada
 - *t* = ángulo de medición

t = longitud de onda

Teoría de MIE

C_{l,θ}(D) Coeficientes de Mie Intensidad dispersada a cada ángulo (θ) por una partícula de diámetro D.

El Problema Inverso

Equipo para DLS (Brookhaven Instrument)

Dispersión de Luz Dinámica (DLS)

DLS: Modelo Discreto

$$g_{\theta}^{(1)}(\tau_{j}) = \Delta D \sum_{i=1}^{n} e^{-\frac{\Gamma_{0} - \tau_{j}}{D_{i}}} C_{I,\theta}(D_{i}) f(D_{i})$$
con: $\Gamma_{0} = \frac{16}{3} \pi \left(\frac{n_{m}}{\lambda}\right)^{2} \frac{kT}{\eta} \sin^{2}(\theta/2)$

Variables:

 $C_{I,\theta}$: coeficientes de Mie τ_j : tiempo de retardo D_i : diámetro de partícula

Parámetros:

- $n_{\rm m}$: índice de refracción del medio
- $n_{\rm p}$: índice de refracción de partículas (IRP)
- λ : long. de onda del láser
- η : viscosidad del medio (agua)
- *T*: temperatura
- k: Constante de Boltzmann

MEDICIONES COMBINADAS

Con el objetivo de:

Aumentar el "Contenido de Información" en las mediciones

Alternativas Exploradas

- 1) DLS Multiángulo
- 2) ELS + T
- 4) DLS + ELS

Técnicas de Regularización

3) DLS Multiángulo + T **Optimización por "Prueba y Error" Red** Neuronal

TÉCNICA COMBINADA: DLS MULTIÁNGULO

TÉCNICA COMBINADA: DLS MULTIÁNGULO + T

TÉCNICA COMBINADA: ELS + DLS

Modelo DLS (Diámetro promedio)

 $= \sum_{i=1}^{N} C_{I}(\theta_{r}, D_{i}) f(D_{i})$ $I(\theta_r)$ $\frac{\sum_{i=1}^{N} C_{I}(\theta_{r}, D_{i}) f(D_{i})}{\sum_{i=1}^{N} [C_{I}(\theta_{r}, D_{i}) f(D_{i})]}$ $D_{\rm DLS}(\theta_r)$

Mediciones independientes, a (*r* = 1, 2, ..., R) ángulos distintos.

Problema Inverso

Hallar la PSD, $f(D), \ldots$

... a partir de las mediciones: $\{I(\theta_r), D_{\text{DLS}}(\theta_r)\}$

El Modelo Inverso basado en Redes Neuronales

Estimación de la PSD

- ✓ **GRNN**: Generalized Regression Neural Network
- ✓ GRNN es un caso particular de una red tipo RBF (Radial Basis Function)
- ✓ Una unidad oculta centrada en cada caso de entrenamiento
- \checkmark No. neuronas = No. patrones de entrenamiento

- **x**: vector de entradas
- y_k : k-ésima variable de salida
- w_{kj} : factores de peso
- \mathbf{c}_i : centro de la j-ésima neurona
- d: distancia Euclidea

Entrenamiento de la Red Neuronal

Distribution Normal-Logarítmica (asimétrica)

$$f(D_i) = \frac{1}{D_i \sigma \sqrt{2\pi}} \exp\left[-\frac{\left[\ln(D_i/\overline{D})\right]^2}{2\sigma^2}\right]$$

 \overline{D} (nm): diámetro medio geométrico σ (nm): desviación estándar

Rango de entrenamiento

Diámetros medios:[140 - 800] nm, cada 5 nm(133 valores)Desviación estándar:[0.01 - 0.20] nm, cada 0.01 nm(20 valores)Eje de diámetros:[50 - 1100] nm, cada 5 nmEje de ángulos:[10 - 170] grados, cada 10 grados

Total de patrones de entrenamiento: $133 \times 20 = 2660$

Ejemplos Simulados

Validación Experimental. Técnicas Utilizadas

- Estándar de poliestireno (PS) de diámetro nominal 111 nm
- > Mediciones por 4 técnicas independientes: DLS; ELS; TEM; CHDF.

Validación Experimental. Comparación de Resultados

Comparación de diámetros medios

Técnica	$D_{1,0}$	$D_{\mathrm{DLS}} (90^{\circ})$	$D_{6,5}$
NN	105.9	114.5	115.2
TEM	103.2	105.0	105.1
CHDF	119.7	144.3	148.0
ELS	108.7	185.8	200.8

- NN provee la solución más próxima a la de TEM (PSD "verdadera")
- CHDF provee una PSD muy ancha
- ELS sugiere una bimodalidad
- Los diámetros medios calculados con NN son los más cercanos a los medidos por DLS (casi uniformes).

HERRAMIENTA DE SOFTWARE (en desarrollo)

abla		- O×	- 🛅 Tablas
Fuente de Datos:			Tabla_2
Inputs (ELS - Ddls): (C:/Documents and Se	ttings/el Rafa/Escritorio/inputsGRNN.txt		 Generar SubT Graficar Tabla
Targets (PSD): /C:/Documents and Se	ttings/el Rafa/Escritorio/outputsGRNN.txt		
Nombre Tabla: Tabla_2			
	Generar		
	100%		
ropiedades de los datos:			•
Fecha de creacion: 14/05/2007	Patrones de entrenamiento: 1200		E Contraction Modelos
			Propiedade
ELS - Ddls	PDS		Validar Mo
Tita min: 10	Diametro min: 140		
Tita max: 170	Diametro max: 500		
Variacion Tita: 10	Variacion Diametro: 5		
Cantidad val. Tita: 17	Cantidad val. diametro: 73		
onsola			

PROBLEMAS DE INTERÉS PENDIENTES (; Muchos !)

APLICACIONES

- Tamaños de partículas con IRP desconocidos
- Sistemas particulados con IRP combinados (partículas "núcleo / coraza")
- Formas de partículas (discos, cilindros, elipsoides, ...)
- * Tamaños moleculares, composición y topologías de polímeros
- ✤ El problema de la Cromatografía de Exclusión

TÉCNICAS

- Mejorar la técnicas disponibles (numéricas, redes neuronales)
- Criterios para determinar la "mejor combinación" de técnicas
- Combinar técnicas de fraccionamiento con técnicas ópticas