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INTRODUCTION

O GENERAL OVERVIEW

= Wind-induced vibrations on transmission line conductors
(TLC) caused by vortex-shedding (Rawlins, 1979;
Hagedorn, 1982; Meynen et al., 2005)

= Main features: frequency range 5 Hz - 60 Hz and
amplitude range 0.01 D - 1D (D denotes de conductor
diameter 15 mm - 30 mm)

= Well-known galloping vibrations of very low frequencies
(below 1 Hz), caused by aerodynamic instabilities, are not
addressed here

s TLC are composed of wires helically wrapped around a
central core



INTRODUCTION

0O GENERAL OVERVIEW (cont.)

Aluminum Conductor Steel Reinforced (ACSR Conductors)
Layers of aluminum wires helically wrapped around a central steel core

photograph and sketch of a typical TLC



INTRODUCTION

O GENERAL OVERVIEW (cont.)

s TLC are subjected to very high tensile loads (20 kN — 40 kN)
and clamped at the suspension towers

s Frequency spectrum almost continuous; two natural
frequencies separated by approximately 0.1 Hz - 0.3 Hz

s Vortex-shedding frequency almost always close to one of the
natural frequencies of TLC

= Field and laboratory measurements indicate that TLC have low
internal damping, mainly in the frequency range 0 - 30 Hz

= Main damping mechanisms are: (i) interstrand friction among
the wires (structural damping); (ii) aerodynamic damping and
(iii) material damping



INTRODUCTION

O GENERAL OVERVIEW (cont.)

= Wind-induced vibrations on TLC occur for wind speeds in the
range 1 m/s to 10 m/s

= Reynolds number lies in the sub-critical range (103 to 104)

s Vortex-shedding across stationary bluff bodies in this Reynolds
range has a well defined frequency, expressed in terms of a
nondimensional parameter called Strouhal number St

s For smooth and circular cylinders St = 0.2

s For TLC, field measurements indicate that 0.185 < St < 0.22
(Kraus and Hagedorn, 1991; Rao, 1995)



INTRODUCTION

O GENERAL OVERVIEW (cont.)

m Vortex-shedding across a stationary cylinder is not yet completely
understood [Williamson and Govardhan (2004)]

s Concerning wind-induced vibrations on TLC, other complicating
factors come into picture

m (i) the dynamic interaction between wind flow and TLC vibrations;
m (ii) the turbulent nature of wind flow;

m (iii) TLC structural vibrations due to lack of information regarding the
bending stiffness and damping parameters of TLC

d MOTIVATION

s Wind-induced vibrations are a critical problem for safety and
reliability of transmission lines

s Bending strains and stresses caused by such vibrations may cause
fatigue damages of conductor wires



INTRODUCTION

QO MOTIVATION (cont.)

= Fatigue damages may lead to complete rupture of the
conductor and, consequently, to the interruption on the
supply of electric energy

= Therefore, the understanding of wind-induced vibrations on
TLC is a relevant issue

s Accurate predictions of such vibrations depend, of course, on
the knowledge of stiffness and damping properties of TLC

O OBJECTIVE

s Estimate the bending stiffness and damping parameters of a
typical TLC based on inverse analysis



Wwind Profile U(x,t) //r/ Suspension Tower




INTRODUCTION

QWHAT IS THE OBJECTIVE OF THIS PROJECT ?

o To reduce the vibration levels of TLC.

QWHAT ARE THE TARGETS ?

o Target 1 : Determine the bending stiffness and the
damping parameters of transmission line cables.

o Target 2: Determine a suitable mathematical model for the
StockBridge Damper.
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OQWHAT ARE THE TARGETS ? (Cont.)

o Target 3 : Analyze the fluid Structure Interaction.

o Target 4 :Determine the optimum number of StockBridge
Dampers as well as their optimal positions to reduce the
amplitude of vibrations of TLC when the system is excited
by wind.



INTRODUCTION

QWHAT IS THIS PRESENTATION ABOUT ?

o Target 1: Estimation of the bending stiffness and damping
parameters of transmission line cables

OWHAT ARE THE MAIN ISSUES CONCERNING THIS TARGET ?

o Which model should we use ?

o Which damping model should we use ?

o How do we estimate the model parameters ?



BRIEF LITERATURE REVIEW

= The majority of theoretical models proposed to predict wind-induced
vibrations idealizes TLC structure as a continuous (Claren and Diana,
1969; Dhotarad et al., 1978; Hagedorn et al., 1987; Diana et al., 2000;
Vecchiarelli et al., 2000; Barbieri et al., 2004; Meynen et al., 2005)

s The simplest models idealize TLC as homogeneous taut strings without
bending stiffness; more complex ones idealize TLC as homogeneous

elastic beams with structural damping being represented as of hysteretic
kind

= Authors rarely report the values adopted for the bending stiffness and
damping parameters; there is a current lack in the literature about
mechanical properties of typical TLC

= Most of data available refers to the power dissipated by TLC during
standard self-damping tests on a laboratory span. Discrepancy among
measurements performed by different authors may reach 100%!

= Authors rarely compare their theoretical predictions against experimental
measurements (Claren and Diana, 1969; Diana et al., 2000; Barbieri et
al., 2004)



BRIEF LITERATURE REVIEW

s Few works have attempted to account for the helicoidal structure of TLC
and all damping mechanisms, most authors adopts a constant value for
the bending stiffness

= Recommendation is to choose such the bending stiffness as a constant
value between the minimum and maximum values [CIGRE (1989)]
m minimum value (EI ;) is obtained by considering TLC as a bundle of individual
wires free to move relative to each other

m maximum value (EI_,,) is obtained by considering TLC a bundle of individual
wires unable to move relative to each other due to contact pressure

s Nevertheless, Papailiou (1997) presented a more sophisticated model
which accounts for helicoidal geometry of the wires, interlayer friction and
slipping during bending (non-linear model)

= Such a model leads to a bending stiffness which changes with amplitude
and mechanical load applied to TLC

= Papailiou (1997) compared his theoretical predictions against
experimental measurements performed on laboratory and the agreement
was satisfactory



BRIEF LITERATURE REVIEW

MINIMUM AND MAXIMUM VALUES OF THE BENDING STIFFNESS
[CIGRE (1989)]
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F.  Young's modulus of elasticity for steel

F, Young's modulus of elasticity for steel

dg Steel wire diameter

d, Alumimun wire diameter

N, Number of steel wires ACSR conductor Grosbeak

N, Number of aluminum wires 26 aluminum wires da =3.973 mm
Mg Number of lavers of steel wires 7 steel wires ds = 3.089 mm

El_=28.4 N.m2
El_.. =1027 N.m?

e Number of lavers of aluminum wires

N;  Number of wires in the it* layer

R, Radius of it laver What value of El should we use?




MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM cepe Gy 2

Grupo Eletrobras

d HYPOTHESIS

= TLC modelled as an Euler-Bernoulli beam with constant
bending stiffness and subjected to a constant axial load

s Small displacements
s Aerodynamic damping of viscous type
= Material damping modelled from constitutive equation

Vix+Ax. 1)

Ni{x+Ax.t)

Vix,t)

M{x+Ax 1)

N{x.t)

Wix.t)

M=, T)

Sketch of a differential
element of the TLC
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O EQUILIBRIUM EQUATIONS
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O CONSTITUTIVE EQUATION ?

o Linear or nonlinear ?

o Candidate models ?



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UCONSTITUTIVE EQUATION - LINEAR ?

o STICK-SLIP BETWEEN THE STRANDS (PAPAILIOU, 1997)

o FOR TLC THE AXIAL TENSION IS EXTREMELY HIGH

o EXPERIMENTS AIMED AT ASSESSING WHETHER TLC
POSSES LINEAR BEHAVIOUR WERE PERFORMED.

o BASED ON EXPERIMENTAL DATA WE DECIDED TO ADOPT
A LINEAR MODEL FOR THE TLC USED (HORIZONTAL,
HIGH AXIAL TENSION AND LOW SAG)
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UCONSTITUTIVE EQUATION

0 Generalized damping model (time domain)

! de
o (x,1) :Eg(x,rj—/ K(x,'r—fjm dt.
0

o Kelvin-Voigt model (time domain)
. de
o Hysteretic damping model (frequency domain)

G(x. jo)=(EI+ jql) é(x. jo)
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UKELVIN-VOIGT MODEL

o Constitutive equation defined in time domain what enables
one to obtain the governing partial differential equations
also in time domain.

o Governing equation

El

4 2 4., , 2.,
d%w c? W éf (8 w) Aw W

o ot ) T TH R

Y = H(x,1)

o + Boundary conditions



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UHYSTERETIC DAMPING MODEL

o Constitutive equation defined in frequency domain.
Coresponds to the dissipation model mostly adopted for
the analysis of TLC.

o Characterized by a constant loss factor.

Therefore, we cannot obtain the governing
equatiens’in time domain.



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

O DIRECT PROBLEM

s Comprises the solution of the above equations subjected
to appropriate boundary and initial conditions, assuming
that parameters EI, I, 7/ and a, and the excitation H(x,t)

are known

s Two techniques were used to solve the direct problem:
(i) the finite-element method FEM (Hughes, 2000; Reddy,
1993) and (ii) the generalized integral transform GITT
(Cotta, 1993; Ozisik, 1993)



MATHEMATICAL FORMULATION cereL Cy

OF THE PHYSICAL PROBLEM

Grupo Eletrobras

0 DIRECT PROBLEM BY FEM : KELVIN-VOIGT DAMPING MODEL
= Weak Form

/‘Ie+1 (_Tﬂﬁ_&r&lﬂ' ?u . Pw *u dw %
Xg
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; dt?
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= Galerkin Discretization

w(x, ) = N(x)w,(¢)

= System of Ordinary Differential Equations
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UDIRECT PROBLEM BY FEM : KELVIN-VOIGT DAMPING MODEL

s Mass, Stiffness and Damping Matrices
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MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UDIRECT PROBLEM BY FEM : HYSTERETIC DAMPING MODEL

o The relationship between the excitation and the response of
the system can be written only in the frequency domain

(jo) M+(joD, +{K+ D} |w(jo) =F(jo

o Elemental matrices

D = <M
y7i
. ¢—= 0°N" 9°N
Dg = J-?]I R dx

Xe



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

O DIRECT PROBLEM: HYBRID SOLUTION BY GITT - KELVIN-VOIGT

o Auxiliary Eigenvalue Problem FEN ey

, EI T —UAW, =0
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MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

d INVERSE PROBLEM

= The unknown parameters are the bending stiffness EI,
the viscous damping coefficient a, and the constitutive
damping parameters

nl and &L

= Additional information used to estimate these two
parameters are the complex frequency response functions
‘measured’ at prescribed locations xp, p = 1, 2, ..., Ns,
and circular frequencies Wqg, g = 1, 2, ..., Nf (Ns and Nf
denote, respectively, the number of sensors and
frequency data)
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UJINVERSE PROBLEM

= Solution of inverse problem comprises the minimization of a
suitable error function S(p), viz.

S(p) = f(p.H*™ , H" (p))

= What is a suitable choice for S(p) ?

s What are the characteristics of our experimental data and
what is our interest ?



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UINVERSE PROBLEM - FIRST STAGE

o Use the experimental data concerning the lowest frequency
bands

o Estimate EI and one of the damping parameters by the the
classical Levenberg-Marquardt iterative procedure [Beck
and Arnold, 1977; Ozisik and Orlande (2000)].



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UINVERSE PROBLEM - FIRST STAGE

o Error function

S(p) = [H*?(p) — H**(p)]" [H**"(p) — H*'(p)]

o Iterative procedure

ﬁpk — [JL'T JL‘ + }\kﬁk]_l,]k [Hexp . He.st (ph)]



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UINVERSE PROBLEM - SECOND STAGE

dUse the experimental data containing informmation of the
higher frequency bands

dUse the estimated parameters obtained in the first stage as
a priori information for the estimation of the unknown
parameters.

QError function

Syap(p) = [H*" —H*'(p)" W [H*" — H*'(p)]
+[Pu —pI" V7 [P — )



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

LOINVERSE PROBLEM - SECOND STAGE
o Error function

Suap(p) = [H™? — H*(p)]" W [H*? — H*'(p)]
+[px —pI" V7' [pu — D]

o Iterative procedure

Ap* = [JFWI* + VITHIFW [H(p) — H*'(p)] + V™! (p - p*))



MATHEMATICAL FORMULATION

OF THE PHYSICAL PROBLEM

UINVERSE PROBLEM - SECOND STAGE

o In the present work the iterative procedure for the second
stage was implemented in a convenient form for
computational purposes, which avoids matrix
inversions. For this we have employed the sequential
estimation technique [Beck and Arnold, 1977, Orlande,
2002 , Beck, 2003].
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UINVERSE PROBLEM - SECOND STAGE -ALGORITHM

m Stepl:Initialize the iterative procedure by setting the
iteration index k to 0 and p® = p,.

s Compute the estimate for the vector of unknown
parameters sequentially, by using

A=v,J"

-2
ni1

Vo=V, pj" =pu. W =¢
AT iAW 0 0 g 1

n-+1

F=A1A .
J EjnH;Esf
E.., = H7 — H* (p") o dp

n+l

p=p"

pril = pE + TEns1 — Jnna(pr™ — pi))

1\-"'-;.1_1 == 1\"'.-11 - T Jn—l 1“';-:11
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LQEXPERIMENTAL SET-UP (Sketch)

| acall

!IAE shaker
L /il 7
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UEXPERIMENTAL SET-UP - SHAKER
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UEXPERIMENTAL SET-UP - LOAD CELL
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UEXPERIMENTAL SET-UP - ACCELEROMETER AND LOAD CELL
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UEXPERIMENTAL SET-UP

o Grosbeak ACSR conductor
ouw=1.30271 kg/m

o T=21778.2N and T = 27468.0 N
oL=51.905m

o Xy =1.39m

o X, =0.70m

o X3 =1.61m
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UEXPERIMENTAL SET-UP : FRFs

Band (Hz) ng4 (Number of averages) Accelerometers
5, 17.5] 30 AC1. AC2 and AC3
17.5, 30] 30 AC1, AC2 and AC3

o All the FRFs are measured with 801 equally spaced
frequency points
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UEXPERIMENTAL SET-UP : FRFs

Measured FRFs - Magnitude {m.-"s").-"N}

10" 5

—
=
[
|

—a— Accelerometer AC3
- Accelerometer ACH
—-a—— Accelerometer AC2

10 —
12.0 125 1

3.0 135 140 145 150 155 16.0
Frequency (Hz)

Measured FRFs - Magnitude {m.-“sE.-“N}

107

—a— Accelerometer AC3
- Accelerometer ACH
- Accelerometer AC2

22

23

24 25 26 27 28
Frequency (Hz)
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URESULTS: CASE C1

oT=21778.2 N

a [5, 17.5] Hz

o Kelvin-Voigt model

o Unknown parameters a and EI and for case Cl1 it is
considered that&l = 104 N.m?s1.

o Initial Guess for EI and o ?
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URESULTS: CASE C1

o We do not have any information about a suitable intial guess
for oo , therefore we have considered oa©@= 10-2N.s.m™>2.

o Concerning the parameter EI, the RE provide
the ' d minimum yalues: EIMn = 28 N.m*and
EImax = 1027 N.m?2.

o Parameterization EI=p,x103 and o = p,.




RESULTS AND CONCLUSIONS

URESULTS: CASE C1

Estimated bending stiffness and aerodynamic damping coefficient (Case C'1).

GITT FEM
EI®  EI o ZEL Ze \prO) pJ a  ZEL

o) o e a

28 7439 0355 2.8  0.012 28 7422 03494 28 0.0114
5275  T48.9 0.355 2.8 0.012 | 5275 7419 03495 28 0.0114
1027 7489 0355 28 0.012 | 1027 7419 0.3495 28 0.0114

ODEFINITION: Normalized norm

e..si;| ( le:r.p . qest‘JH(qemp . qest]

q ™y =
| 1IN (qemp)qua‘.p
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URESULTS: CASE C1

o Definition of a normalized norm of the FRFs

exrp qest)H(qexp L qest)

(qexp) quxp

(q

‘qut‘N _

o Norms for case C1

Band (Hz) AC1 AC?2 AC3
7

5,17.5] 0.6761 0.6665 0.6894
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URESULTS: CASE C2

o [17.5, 30] Hz

o Use the results provided by case Clnformation.

o Unknown parameters a and EI and &L

o Parameterization: EI = p,x103, o = p, and EI = p;x10-2

a The components of the covariance matrix V and vector p,
associated to EI and o are obtained from case C1.
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URESULTS: CASE C2

o What about the components of the covariance matrix V
and vector p, for parameter ¢l ?

s As we do not have any information concerning I we simply
consider that its mean is a small number and its standard
deviation is a large number; therefore we have chosen 10
and 1019, respectively.

p, = {0.7419, 0.3495, 10~} *
[ 7.91%x10°° —278x10~7 0 )
V=0’x|-278x10"7 1.20x 104 0

10
K 0 0 10 )
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URESULTS: CASE C2

FEM
El o 1 9EL oo 3

ag a g

673.9 0.393 0.029 0.347 0.008 0.0037

GITT
EI o &I e o %

a a a

682.4 0.393 0.026 0.336 0.013 0.0048

ONorms for case C2

Band (Hz) AC1 AC2  AC3

[5,17.5] 0.8201 0.8084 0.8320

[17.5,30] 0.4663 0.4409 0.5032
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URESULTS: CASE C2

o Validation in time domain with na excitation equal to a white
noise enconpassing the band [5, 17.5] Hz

40

204

2
AC, (m/s?)
T
-
=
_
-

=20 -

-40 - | - .

t(s)
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URESULTS: CASE C2

o Validation in time domain with na excitation equal to a
white noise enconpassing the band [5, 17.5] Hz

40
20-
‘f",_," _
o 04
Q
< o
-20_
— EXP
— MODEL
-40 - . - .
5 6 7 8

t(s)
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URESULTS: CASE C2

o Validation in time domain with na excitation equal to a white
noise enconpassing the band [5, 17.5] Hz

40

204

-20 -

(m/s?)

shaker

AC

— EXP
—— MODEL

-40 - . - |

t(s)
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QRESULTS: CASE C3

o [17.5, 30] Hz
o Use the results provided by case C1 as a priori information.

o Hysteretic damping model. Unknown parameters o and EI and
nl.

0 Parameterization: EI = p,x103, o = p, and nlI = p;

a The components of the covariance matrix V and vector p,
associated to EI and a are obtained from case C1.
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QRESULTS: CASE C3

o What about the components of the covariance matrix V
and vector p, for parameter nl ?

s As we do not have any information concerning I we simply
consider that its mean is a small number and its standard
deviation is a large number; therefore we have chosen 10
and 1019, respectively.

p, = {0.7419,0.3495,10~%}"
[ 7.01% 107 —278x 107 0

V=0?x|_-278%10"7 120x 104 0

10
K 0 0 10 )
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QRESULTS: CASE C3

FEM

ET ar il 9EL Ta anl
a r

678.9 03771 6.0481 0.3504 0.009 0.679

LNorms for case C3

Band (Hz) AC1  AC2  AC3
5,17.5]  0.8220 0.8101 0.8339

[17.5,30] 0.4659 0.4407  0.5026
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dSequential evolution of the estimated parameters for cases

C2e(C3
900
Case C2
Case C3
800 -
00—
< —_—l —
L
600 -
500 . I - ! - T
0 1000 2000 3000

Sequence point (n)
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dSequential evolution of the estimated parameters for cases
C2eC3

0.6

Case C2
Case C3

o (N.s.m™)

0.2

! | ! | l |
0 1000 2000 3000

Sequence point (n)
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dSequential evolution of the estimated parameters for cases C2
e C3

0 - W
5
— -1 7]
K
£
Z 24
=
E
i
' T ' T ' T
0 1000 2000 3000

Sequence point (n)
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dSequential evolution of the estimated parameters for cases

C2e(C3
O—J—(_V—'—

-300 -

' T ' T ' T
0 1000 2000 3000

Sequence point (n)
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URESULTS: CASE C4

o Exactly equal to case C1 e C2 in sequence but with axial
tension equal to T = = 27468.0 N

0 EI = 615.8 N.m?

o o=0.3674 N.s.m™?

o &l = 2.8186 x102 N.m?2.s1



FINAL REMARKS

d TLC's were modelled as homogeneous beams with viscous and
structural damping

[ Based on experimental data it was chosen a linear model to
represent the system.

d Two classical damping models have been used

d Their bending stiffness and damping parameters were estimated
based on inverse analysis

A Direct problem associated to estimation process was solved by
two approaches: FEM and GITT

A Inverse problem was solved through Levenberg-Marquardt
iterative procedure and the sequential estimation technique.



FINAL REMARKS (cont.)

O MAIN CONCLUSIONS

s Objective function much more sensitive to o than to EI in the
frequency range (0,20 Hz)
s Estimates for o were in good agreement with its true value
s Estimated parameters pratically unaffected by noise level
= Uncertainty in span length affects much more EI
= Uncertainty in mechanical load largely affects both parameters
d MAIN CONTRIBUTIONS
m The estimation of bending stiffness and damping parameter of TLC

m Use of GITT approach to solve direct problem associated to
estimation process

= Numerical analysis of the effects of model uncertainties on estimated

parameters what, to authors belief, are not considered previously in
the literature for this specific problem
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d Estimate these parameters for different span lengths and
different axial tractions

d Investigate a suitable mechanical model for the StockBridge
damper

d Analyze the coupled system TLC and damper based on the
estimated models and evaluate it based on experimental data.



