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INTRODUCTION

� GENERAL OVERVIEW

� Wind-induced vibrations on transmission line conductors
(TLC) caused by vortex-shedding (Rawlins, 1979; 
Hagedorn, 1982; Meynen et al., 2005)

� Main features: frequency range 5 Hz – 60 Hz and
amplitude range 0.01 D – 1D (D denotes de conductor
diameter 15 mm – 30 mm) 

� Well-known galloping vibrations of very low frequencies
(below 1 Hz), caused by aerodynamic instabilities, are not
addressed here

� TLC are composed of wires helically wrapped around a 
central core



� GENERAL OVERVIEW (cont.)

Aluminum Conductor Steel Reinforced (ACSR Conductors)
Layers of aluminum wires helically wrapped around a central steel core

photograph and sketch of a typical TLC
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� GENERAL OVERVIEW (cont.)
� TLC are subjected to very high tensile loads (20 kN – 40 kN) 
and clamped at the suspension towers

� Frequency spectrum almost continuous; two natural 
frequencies separated by approximately 0.1 Hz – 0.3 Hz

� Vortex-shedding frequency almost always close to one of the
natural frequencies of TLC

� Field and laboratory measurements indicate that TLC have low
internal damping, mainly in the frequency range 0 – 30 Hz

� Main damping mechanisms are: (i) interstrand friction among
the wires (structural damping); (ii) aerodynamic damping and
(iii) material damping
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� GENERAL OVERVIEW (cont.)

� Wind-induced vibrations on TLC occur for wind speeds in the
range 1 m/s to 10 m/s

� Reynolds number lies in the sub-critical range (103 to 104)

� Vortex-shedding across stationary bluff bodies in this Reynolds 
range has a well defined frequency, expressed in terms of a 
nondimensional parameter called Strouhal number St

� For smooth and circular cylinders St = 0.2

� For TLC, field measurements indicate that 0.185 < St < 0.22 
(Kraus and Hagedorn, 1991; Rao, 1995)
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� GENERAL OVERVIEW (cont.)

� Vortex-shedding across a stationary cylinder is not yet completely
understood [Williamson and Govardhan (2004)]

� Concerning wind-induced vibrations on TLC, other complicating
factors come into picture
� (i) the dynamic interaction between wind flow and TLC vibrations; 
� (ii) the turbulent nature of wind flow; 
� (iii) TLC structural vibrations due to lack of information regarding the
bending stiffness and damping parameters of TLC

� MOTIVATION

� Wind-induced vibrations are a critical problem for safety and
reliability of transmission lines

� Bending strains and stresses caused by such vibrations may cause 
fatigue damages of conductor wires
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� MOTIVATION (cont.)

� Fatigue damages may lead to complete rupture of the
conductor and, consequently, to the interruption on the
supply of electric energy

� Therefore, the understanding of wind-induced vibrations on
TLC is a relevant issue

� Accurate predictions of such vibrations depend, of course, on
the knowledge of stiffness and damping properties of TLC

� OBJECTIVE

� Estimate the bending stiffness and damping parameters of a 
typical TLC based on inverse analysis
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INTRODUCTION

�ALL IN ALL, WHAT IS THE SYSTEM UNDER ANALYSIS ?



�WHAT IS THE OBJECTIVE OF THIS PROJECT ?

� To reduce the vibration levels of TLC.

�WHAT ARE THE TARGETS ?

� Target 1 : Determine the bending stiffness and the
damping parameters of transmission line cables.

� Target 2: Determine a suitable mathematical model for the
StockBridge Damper.
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INTRODUCTION

�WHAT ARE THE TARGETS ? (Cont.)

� Target 3 : Analyze the fluid Structure Interaction.

� Target 4 :Determine the optimum number of StockBridge
Dampers as well as their optimal positions to reduce the 
amplitude of vibrations of TLC when the system is excited
by wind. 



�WHAT IS THIS PRESENTATION ABOUT ?

� Target 1: Estimation of the bending stiffness and damping
parameters of transmission line cables

�WHAT ARE THE MAIN ISSUES CONCERNING THIS TARGET ?

� Which model should we use ?

� Which damping model should we use ?

� How do we estimate the model parameters ?
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BRIEF LITERATURE  REVIEW

� The majority of theoretical models proposed to predict wind-induced
vibrations idealizes TLC structure as a continuous (Claren and Diana, 
1969; Dhotarad et al., 1978; Hagedorn et al., 1987; Diana et al., 2000; 
Vecchiarelli et al., 2000; Barbieri et al., 2004; Meynen et al., 2005)

� The simplest models idealize TLC as homogeneous taut strings without
bending stiffness; more complex ones idealize TLC as homogeneous
elastic beams with structural damping being represented as of hysteretic 
kind 

� Authors rarely report the values adopted for the bending stiffness and
damping parameters; there is a current lack in the literature about
mechanical properties of typical TLC

� Most of data available refers to the power dissipated by TLC during
standard self-damping tests on a laboratory span. Discrepancy among
measurements performed by different authors may reach 100%!

� Authors rarely compare their theoretical predictions against experimental 
measurements (Claren and Diana, 1969; Diana et al., 2000; Barbieri et
al., 2004)



BRIEF LITERATURE REVIEW

� Few works have attempted to account for the helicoidal structure of TLC 
and all damping mechanisms, most authors adopts a constant value for 
the bending stiffness

� Recommendation is to choose such the bending stiffness as a constant
value between the minimum and maximum values [CIGRÉ (1989)]
� minimum value (EImin) is obtained by considering TLC as a bundle of individual 

wires free to move relative to each other
� maximum value (EImax) is obtained by considering TLC a bundle of individual 

wires unable to move relative to each other due to contact pressure

� Nevertheless, Papailiou (1997) presented a more sophisticated model
which accounts for helicoidal geometry of the wires, interlayer friction and
slipping during bending (non-linear model)

� Such a model leads to a bending stiffness which changes with amplitude 
and mechanical load applied to TLC

� Papailiou (1997) compared his theoretical predictions against
experimental measurements performed on laboratory and the agreement
was satisfactory



BRIEF LITERATURE REVIEW

MINIMUM AND MAXIMUM VALUES OF THE BENDING STIFFNESS   
[CIGRÉ (1989)]

ACSR conductor Grosbeak

26 aluminum wires d
a

= 3.973 mm             

7 steel wires d
s

= 3.089 mm            

EI
min

= 28.4 N.m2

EI
max

= 1027 N.m2

What value of EI should we use?



MATHEMATICAL FORMULATION                   
OF THE PHYSICAL PROBLEM

� HYPOTHESIS

� TLC modelled as an Euler-Bernoulli beam with constant
bending stiffness and subjected to a constant axial load

� Small displacements

� Aerodynamic damping of viscous type

� Material damping modelled from constitutive equation

Sketch of a differential
element of the TLC



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

� EQUILIBRIUM EQUATIONS

� CONSTITUTIVE EQUATION ? 

� Linear or nonlinear ?

� Candidate models ?



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�CONSTITUTIVE EQUATION – LINEAR ?

� STICK-SLIP BETWEEN THE STRANDS (PAPAILIOU, 1997)

� FOR TLC THE AXIAL TENSION IS EXTREMELY HIGH

� EXPERIMENTS AIMED AT ASSESSING WHETHER TLC 
POSSES LINEAR BEHAVIOUR WERE PERFORMED. 

� BASED ON EXPERIMENTAL DATA WE DECIDED TO ADOPT 
A LINEAR MODEL FOR THE TLC USED (HORIZONTAL,  
HIGH AXIAL TENSION AND LOW SAG)



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�CONSTITUTIVE EQUATION 

� Generalized damping model (time domain)

� Kelvin-Voigt model (time domain)

� Hysteretic damping model (frequency domain)



�KELVIN-VOIGT MODEL

� Constitutive equation defined in time domain what enables
one to obtain the governing partial differential equations
also in time domain.

� Governing equation

� + Boundary conditions

MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�HYSTERETIC DAMPING MODEL

� Constitutive equation defined in frequency domain. 
Coresponds to the dissipation model mostly adopted for 
the analysis of TLC. 

� Characterized by a constant loss factor.

� Non-causal. Therefore, we cannot obtain the governing
equations in time domain. 



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

� DIRECT PROBLEM

� Comprises the solution of the above equations subjected
to appropriate boundary and initial conditions, assuming
that parameters EI, ξI,      and a, and the excitation H(x,t) 
are known

� Two techniques were used to solve the direct problem: 

(i) the finite-element method FEM (Hughes, 2000; Reddy, 
1993) and (ii) the generalized integral transform GITT 
(Cotta, 1993; Özişik, 1993) 

Iη



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

� DIRECT PROBLEM BY FEM : KELVIN-VOIGT DAMPING MODEL

� Weak Form

� Galerkin Discretization

� System of Ordinary Differential Equations



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�DIRECT PROBLEM BY FEM : KELVIN-VOIGT DAMPING MODEL

� Mass, Stiffness and Damping Matrices



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�DIRECT PROBLEM BY FEM : HYSTERETIC DAMPING MODEL

� The relationship between the excitation and the response of 
the system can be written only in the frequency domain

� Elemental matrices
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MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

� DIRECT PROBLEM: HYBRID SOLUTION BY GITT – KELVIN-VOIGT

� Auxiliary Eigenvalue Problem

+ homogeneous B.C.’s

� Inverse-Transform Pair

� Transformation of Original Problem - System of Coupled
Ordinary Differential Equations



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

� INVERSE PROBLEM

� The unknown parameters are the bending stiffness EI, 
the viscous damping coefficient α, and the constitutive
damping parameters
ηI and ξI.

� Additional information used to estimate these two
parameters are the complex frequency response functions
‘measured’ at prescribed locations xp, p = 1, 2, ..., Ns, 
and circular frequencies Wq, q = 1, 2, ..., Nf (Ns and Nf
denote, respectively, the number of sensors and
frequency data) 



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM

� Solution of inverse problem comprises the minimization of a 
suitable error function S(p), viz.

� What is a suitable choice for S(p) ? 

� What are the characteristics of our experimental data and
what is our interest ?

( ) ( , , ( ))
Exp Est

S f=p p H H p



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - FIRST STAGE

� Use the experimental data concerning the lowest frequency
bands

� Estimate EI and one of the damping parameters by the the
classical Levenberg-Marquardt iterative procedure [Beck
and Arnold, 1977; Özişik and Orlande (2000)].



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - FIRST STAGE

� Error function

� Iterative procedure



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - SECOND STAGE

�Use the experimental data containing informmation of the
higher frequency bands

�Use the estimated parameters obtained in the first stage as 
a priori information for the estimation of the unknown
parameters.

�Error function



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - SECOND STAGE

� Error function

� Iterative procedure



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - SECOND STAGE

� In the present work the iterative procedure for the second
stage was implemented in a convenient form for 
computational purposes, which avoids matrix
inversions. For this we have employed the sequential
estimation technique [Beck and Arnold, 1977, Orlande, 
2002 , Beck, 2003].



MATHEMATICAL FORMULATION           
OF THE PHYSICAL PROBLEM

�INVERSE PROBLEM - SECOND STAGE -ALGORITHM

� Step1:Initialize the iterative procedure by setting the
iteration index k to 0 and p(0) = pµ.

� Compute the estimate for the vector of unknown
parameters sequentially, by using



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP (Sketch)



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP – CEPEL’s LABORATORY SPAN



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP – SHAKER



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP – LOAD CELL



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP – ACCELEROMETER AND LOAD CELL



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP

� Grosbeak ACSR conductor

� µ = 1.30271 kg/m

� T = 21778.2 N  and T = 27468.0 N

� L = 51.905 m

� X1 = 1.39 m

� X2 = 0.70 m

� X3 = 1.61 m



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP : FRFs

� All the FRFs are measured with 801 equally spaced
frequency points



RESULTS AND CONCLUSIONS

�EXPERIMENTAL SET-UP : FRFs



RESULTS AND CONCLUSIONS

�RESULTS: CASE C1

� T = 21778.2 N

� [5, 17.5] Hz

� Kelvin-Voigt model

� Unknown parameters α and EI and for case C1 it is 
considered that ξI = 10-4 N.m2s-1.

� Initial Guess for EI and α ?



RESULTS AND CONCLUSIONS

�RESULTS: CASE C1

� We do not have any information about a suitable intial guess
for α , therefore we have considered α(0)= 10-2N.s.m-2.

� Concerning the parameter EI, the reports by CIGRE provide
the maximum and minimum values: EImin = 28 N.m2 and
EImax = 1027 N.m2.

� Parameterization EI=p1x103 and α = p2.



RESULTS AND CONCLUSIONS

�RESULTS: CASE C1

�DEFINITION: Normalized norm



RESULTS AND CONCLUSIONS

�RESULTS: CASE C1

� Definition of a normalized norm of the FRFs

� Norms for case C1



�RESULTS: CASE C2

� [17.5, 30] Hz

� Use the results provided by case C1 as a priori information.

� Unknown parameters α and EI and ξI.

� Parameterization: EI = p1x103, α = p2 and ξI = p3x10-2

� The components of the covariance matrix V and vector pµ

associated to EI and α are obtained from case C1.

RESULTS AND CONCLUSIONS



RESULTS AND CONCLUSIONS

�RESULTS: CASE C2

� What about the components of the covariance matrix V
and vector pµ for parameter ξI ?

� As we do not have any information concerning I we simply
consider that its mean is a small number and its standard
deviation is a large number; therefore we have chosen 10-5

and 1010, respectively.



RESULTS AND CONCLUSIONS

�RESULTS: CASE C2

�Norms for case C2



�RESULTS: CASE C2

� Validation in time domain with na excitation equal to a white
noise enconpassing the band [5, 17.5] Hz

RESULTS AND CONCLUSIONS



�RESULTS: CASE C2

� Validation in time domain with na excitation equal to a 
white noise enconpassing the band [5, 17.5] Hz

RESULTS AND CONCLUSIONS



RESULTS AND CONCLUSIONS

�RESULTS: CASE C2

� Validation in time domain with na excitation equal to a white
noise enconpassing the band [5, 17.5] Hz



RESULTS AND CONCLUSIONS

�RESULTS: CASE C3

� [17.5, 30] Hz

� Use the results provided by case C1 as a priori information.

� Hysteretic damping model. Unknown parameters α and EI and
nI.

� Parameterization: EI = p1x103, α = p2 and ηI = p3

� The components of the covariance matrix V and vector pµ

associated to EI and α are obtained from case C1.



RESULTS AND CONCLUSIONS

�RESULTS: CASE C3

� What about the components of the covariance matrix V
and vector pµ for parameter ηI ?

� As we do not have any information concerning I we simply
consider that its mean is a small number and its standard
deviation is a large number; therefore we have chosen 10-5

and 1010, respectively.



RESULTS AND CONCLUSIONS

�RESULTS: CASE C3

�Norms for case C3



RESULTS AND CONCLUSIONS

�Sequential evolution of the estimated parameters for cases 
C2 e C3



RESULTS AND CONCLUSIONS

�Sequential evolution of the estimated parameters for cases 
C2 e C3



RESULTS AND CONCLUSIONS

�Sequential evolution of the estimated parameters for cases C2 
e C3



RESULTS AND CONCLUSIONS

�Sequential evolution of the estimated parameters for cases 
C2 e C3



RESULTS AND CONCLUSIONS

�RESULTS: CASE C4

� Exactly equal to case C1 e C2 in sequence but with axial 
tension equal to T = = 27468.0 N

� EI = 615.8 N.m2

� α = 0.3674 N.s.m-2

� ξI = 2.8186 x10-2 N.m2.s-1



FINAL REMARKS

� TLC’s were modelled as homogeneous beams with viscous and
structural damping

� Based on experimental data it was chosen a linear model to 
represent the system.

� Two classical damping models have been used

� Their bending stiffness and damping parameters were estimated
based on inverse analysis

� Direct problem associated to estimation process was solved by
two approaches: FEM and GITT

� Inverse problem was solved through Levenberg-Marquardt
iterative procedure and the sequential estimation technique.



FINAL REMARKS (cont.)

� MAIN CONCLUSIONS
� Objective function much more sensitive to α than to EI in the
frequency range (0,20 Hz)

� Estimates for α were in good agreement with its true value

� Estimated parameters pratically unaffected by noise level

� Uncertainty in span length affects much more EI

� Uncertainty in mechanical load largely affects both parameters

� MAIN CONTRIBUTIONS
� The estimation of bending stiffness and damping parameter of TLC

� Use of GITT approach to solve direct problem associated to 
estimation process

� Numerical analysis of the effects of model uncertainties on estimated
parameters what, to authors belief, are not considered previously in 
the literature for this specific problem



FUTURE WORKS

� Estimate these parameters for different span lengths and
different axial tractions

� Investigate a suitable mechanical model for the StockBridge
damper

� Analyze the coupled system TLC and damper based on the
estimated models and evaluate it based on experimental data.


