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ABSTRACT 
 The Generalized Integral Transform Technique 
(GITT) is extended and unified to handle a wide class of 
nonlinear convective heat and mass transfer formulations that 
involve nonlinearities in every each equation and boundary 
condition coefficients and source terms. The proposed hybrid 
numerical-analytical approach is applicable to both steady and 
transient situations, and the integral transformation process is 
promoted so as to yield an explicit transformed system, which 
can be more efficiently handled by the well-known numerical 
algorithms for initial value problems. An application of laminar 
forced convection in duct flow with temperature dependent 
thermophysical properties is considered more closely to 
illustrate the formal solution.  

 
INTRODUCTION 

 
Discrete numerical methods for partial differential 

formulations in convection-diffusion belong nowadays to the 
routine work of thermal engineers involved in design and 
development tasks, and are no longer restricted to research and 
scientific environments. The various possible approaches are 
consolidated and readily available in textbooks and reference 
material, as well as in commercial application packages [1]. 
Nevertheless, from the research point of view, there is still a 
strong motivation for the improvement of existing simulation 
techniques and for the development of novel strategies that 
benefit from numerical analysis and computer science advances 
as a whole, such as the advancements on adaptive error control 
of ordinary and partial differential equations and the 
dissemination of symbolic computation platforms. 

In this context, solution techniques for partial 
differential equations that exploit the analytical knowledge 
database and rely on modern symbolic computation platforms 
have been calling further attention of the research community 
and offering measurable advantages over the classical 
numerical approaches in a number of applications. Within this 
wide research front, we may place the advancement of the 
Generalized Integral Transform Technique (GITT) for the 
hybrid numerical-analytical solution of convection-diffusion 
problems [2-7]. In this case the emphasis is placed on extending 
the classical integral transform method making it sufficiently 
flexible to handle problems that are not a priori transformable, 
such as in the case of problems with nonlinear coefficients in 
either the equation or the boundary conditions [8-15]. Various 
classes of nonlinear problems in heat and fluid flow have been 
handled by the GITT, and among them convective heat transfer 
problems formulated by either the boundary layer of full 
Navier-Stokes formulations, for cavity, duct or external flows, 
here reviewed just for the internal flow situation of closer 
interest to the application to be later considered [16-30]. 
Nevertheless, only in a few situations [23-24] the full nonlinear 
nature of these equations have been dealt with, including not 
only the usual nonlinear terms that derive from the convective 
formulation, but also those due to the variable physical 
properties, especially in their dependence with temperature. 

The present work is thus aimed at extending and 
unifying the integral transform approach in handling 
convection-diffusion problems with nonlinear behavior in all 
equation and boundary condition coefficients and source terms. 
A fairly general formulation is considered that encompasses a 
wide class of problems that appear in thermal engineering. In 
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light of the possible nonlinear nature of the transient term (or 
equivalent space variable), an explicit transformed system 
formulation is preferred, which brings advantages in the 
numerical computation of the transformed potentials. Also, a 
flexible filtering solution is allowed for that aims at reducing 
the relative importance of equation and boundary source terms 
in the eigenfunction expansions convergence behavior. 

The proposed methodology is then illustrated for a 
fully nonlinear convective heat transfer problem related to 
laminar tube flow of ordinary liquids with all thermophysical 
properties expressed with temperature dependence. 

PROBLEM FORMULATION & FORMAL SOLUTION 
 

We consider a sufficiently general formulation on 
convection-diffusion, which encompasses most of the problem 
statements in convective heat and mass transfer of interest in 
thermal engineering that have been dealt with via integral 
transforms (GITT). A set of potentials, ( , ), 1,2,...kT t k M=x , 
dependent on position x and time t (or equivalent space 
coordinate) such as temperature, concentrations, velocity 
components, pressure, etc, are defined in region V with 
boundary surface S, and obey the following convection-
diffusion equations which include nonlinear coefficients in all 
equation and boundary source terms:  

 

, 0, , 1, 2,...

( , )* *( , , ) ( , , ). ( , ) . ( , , ) ( , )

* *( , , ) ( , ) ( , , ), V t k l M

T tkw t T t T T t k t T T tk l l k k l kt
d t T T t P t Tk l k k l ∈ > =

∂
+ ∇ =∇ ∇ −

∂

− + x

x
x u x x x x

x x x

       (1.a) 
with initial and boundary conditions 
 

( ,0) ( ),T f Vk k= ∈x x x                      (1.b) 

( , )* * *( , , ) ( , ) ( , , ) ( , , )

*( , , ),

T tkt T T t t T k t Tk l k k l k l

t T Sk l

α β

φ

∂
+

∂

= ∈

x
x x x x

n

x x

       (1.c) 

 
The proposed hybrid numerical-analytical approach, based 

on integral transforms, starts with the proposition of a formal 
solution in terms of an eigenfunction expansion of the desired 
potentials, ( , ),kT tx with the corresponding time-dependent 
expansion coefficients, , ( ),k iA t to be determined: 

 

( , ) ( ) ( ), ,1
T t A tk k i k ii

ψ
∞

= ∑
=

x x                           (2) 

 
where the eigenfunctions , ( )k iψ x , are obtained from a 
representative eigenvalue problem that contains as much 
information on the original problem as possible, in the form: 

 
 

2. ( ) ( ) ( ( ) ( )) ( ) 0,, , ,k w d Vk k i k i k k k iψ µ ψ∇ ∇ + − = ∈x x x x x x

(3a) 
 
with boundary conditions 

( ),( ) ( ) ( ) ( ) 0,,
k ik Sk l k i k k

ψ
α ψ β

∂
+ = ∈

∂

x
x x x x x

n
        (3b) 

 
The coefficients, ( ), ( ), ( ), ( ), ( ),k k k k kw k d andα βx x x x x of the 
auxiliary problem (3a)-(3b) are expected to include information 
related to the original nonlinear coefficients in eqs.(1.a)-(1.c). 
Note that the convection term in eq.(1.a) was not represented in 
the auxiliary problem (3a)-(3b), since a non-self adjoint 
eigenvalue problem would result. Although this situation was 
also considered with some advantages in the GITT literature, 
for the sake of generality in the present unification attempt, 
only Sturm-Liouville problems of well-known spectral 
behavior are considered. Thus, problem (3a)-(3b) offers an 
orthogonality property to the eigenfunctions which is quite 
relevant in the present methodology, written as: 
 

, , , ,( ) ( ) ( )k k i k j i j k i
V

w dv Nψ ψ δ=∫ x x x                    (4a) 

where the Kronecker delta as usual is equal to 1 for i=j or 0 for 
i≠j and ,k iN are the normalization integrals which are 
computed from: 
 

2
, ,( ) ( )k i k k i

V

N w dvψ= ∫ x x                         (4b) 

 
With the aid of eq. (4a), we may operate on the proposed 
expansion, eq. (2), with the integral operator 

,( ) ( )k k j
V

w dvψ −∫ x x , to obtain the expansion coefficients: 

 

, ,
,

1( ) ( ) ( ) ( , )k j k k j k
k j V

A t w T t dv
N

ψ= ∫ x x x                   (5) 

 
once all of the terms in the infinite sum of eq.(2) vanish, except 
that one when i=j. Then, eqs.(2) and (5) offer the integral 
transformation pair of formulae, called the inverse and the 
transform: 
 

, ,
1

( , ) ( ) ( ),k k i k i
i

T t T t inverseψ
∞

=

=∑x x                  (6a) 

, ,( ) ( ) ( ) ( , ) ,k i k k i k
V

T t w T t dv transformψ= ∫ x x x     (6b) 

where the normalized eigenfunction is adopted, thus splitting 
the norm between the two formulae, transform and inverse, in 
the form: 
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,
,

,

( )
( ) k i

k i
k iN

ψ
ψ =

x
x                                    (6c) 

 
The next step in the GITT approach is then the integral 

transformation of eqs.(1.a), making use of the transform-
inverse pair above defined. The traditional approach would 
involve the integral transform operation, with the aid of the 
transformation formulae, eq.(6.b), on both sides of eq.(1.a), 
which for this fully nonlinear formulation would result in a 
coupling nonlinear coefficients matrix in the left hand side of 
the transformed system, due to the nonlinear nature of the 

transient term coefficient in the original problem, * ( , , )xw t Tk l . 

From the computational point of view, such implicit nonlinear 
formulation would require that this matrix be inverted along the 
numerical integration process for the transformed system, from 
most of the initial value problem solvers procedure, resulting in 
increased computational cost. However, before proceeding, it is 
advantageous to rewrite the problem formulation so as to offer 
an explicit linear integral transformation of the transient term. 
Since the final result of the integral transformation shall be the 
construction of an initial value problem for obtaining the 
transformed potentials, , ( ),k iT t  it is less computationally 
involved to the associated numerical solution procedure for 
ordinary differential equations, to deal with an explicit linear 
system that would not require numerous matrix inversions 
related to a nonlinear coefficients matrix in the transient term. 
Therefore, the transient term coefficient can be rewritten as: 

 
( , ,

( , , ( ( ( , ,
(

* )* 1) ) ) )
)

t T
t T t T

wk lw w w Ck l k k k lwk
= −=

x
x x x x

x
        (7) 

 
which results in the new version for eq.(1a): 

 
( , )

( )

* *( , , )[ . ( , , ) ( , ) ( , , ) ( , )

*( , , ). ( , ) ( , , )], , 0

T tkwk t
C t T k t T T t d t T T tk l k l k k l k

t T T t P t T V tl k k l

∂
=

∂

= ∇ ∇ −

− ∇ + ∈ >

x
x

x x x x x

u x x x x

(8) 
 
or simply, 

( , )
( ) ( , , ), 0, , 1,2,...,

T tkw H t T t l k Mk k lt

∂
= > =

∂

x
x x      (9a) 

 
where,  

*( , , ) ( , , )[ . ( , , ) ( , )

* *( , , ) ( , ) ( , , ). ( , ) ( , , )]

H t T C t T k t T T tk l k l k l k

d t T T t t T T t P t Tk l k l k k l

= ∇ ∇

− − ∇ +

x x x x

x x u x x x
     (9b) 

 

with initial conditions given by eq. (1.b), and also rewritten 
boundary conditions 
 

( , )
( ) ( , ) ( ) ( ) ( , , ),

T tkT t k t T Sk k k k k lα β φ
∂

+ = ∈
∂

x
x x x x x x

n
      (9c) 

 
where, 
 

* *

* *

( , , ) ( , , ) [ ( ) ( , , )] ( , )
( , )[ ( ) ( ) ( , , ) ( , , )]

k l k l k k l k

k
k k k l k l

t T t T t T T t
T tk t T k t T

φ φ α α

β β

= + −

∂
+ −

∂

x x x x x
xx x x x
n

                (9d)        

 
The integral transformation process itself is then performed, by 
operating eq.(9a) on with , ( )k i

V

dvψ −∫ x , to obtain: 

,
,

( )
( ) ( , , ) , 0, 1,2,...k i

k i k l
V

dT t
H t T dv t i

dt
ψ= > =∫ x x  (10a) 

 
In principle, the direct integration of the right hand side of 
eq.(10a) would give a vector, upon substitution of the inverse 
formula, eq.(6a), into the nonlinear terms, that would however 
not contain any information on the boundary source terms, 

( , , )k lt Tφ x . Therefore, in order to account for the boundary 
condition contribution, we first split this rhs in two, as follows: 
 

( ), *( ) ( , , ) . ( , , ) ( , ),

* *( ) ( , , )[ ( , , ) ( , , ) ( , ),

( , , ). ( , )]

dT tk i C t T k t T T t dvk i k l k l kdt V

C t T P t T d t T T tk i k l k l k l kV
t T T t dvl k

ψ

ψ

= ∇ ∇ +∫

−∫

− ∇

x x x x

x x x x x

u x x

 

(10b) 
 

The first term in the rhs above can be rewritten 
following the 2nd Green´s formula, to find: 

 

,

,

,

,

( , , ( , , ( , )

( , ) ( , , ( , ,

( , )
( , , ( , ,

[ ( , ,
( , )

*( ) ) . )

*. ) [ ( ) )]

* ){ ( ) )

( ) )]
}

k i
V

k i
V

k i
S

k i

t T t T T t

T t t T t T

T t
t T t T

t T
T t

C k dvk l k l k

k C dvk k l k l

kk Ck l k l

Ck l dvk

ψ

ψ

ψ

ψ

∂

∂

∇ ∇ =

∇ ∇ +

−
∂

∂

∫

∫

∫

x x x

x x x

x
x x

x
x

x

x

x
n

x

n

      (10c) 

 
or, 
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*( ) ( , , ) . ( , , ) ( , ),

* *( , )[ . . ], ,

( , )* ( , , ){ ( , , )[ ( ),

( ) ( , , ),( , ) ] ( , ) ( ) },

C t T k t T T t dvk i k l k l kV

T t k C k C dvk i k ik k k k kV
T tkk t T C t T k ik l k lS

C t Tk i k lT t T t dvk ik k

ψ

ψ ψ

ψ

ψ
ψ

∇ ∇ =∫

∇ ∇ +∇ ∇ +∫

∂
−∫

∂
∂ ∂

−
∂ ∂

x x x x

x

x
x x x

n
x x

x x x
n n

   (10d) 

 
Therefore, the transformed system can be written in the short 
form below: 
 

( ), ( , ), 0, 1, 2,..., , 1, 2,..., ,
dT tk i h t T t k M ik i l jdt

= > = =      

(11a) 
 

where the vector , ,( , ),k i l jh t T is formed by the three 
contributions below: 
 

*( , ) ( , ) ( , ) ( , ), , , , , , , ,h t T h t T q t T g t Tk i l j k i l j k i l j k i l j= + +   (11b) 

 
with, 
 

* *( , ) ( ) ( , , )[ ( , , ), , ,

* ( , , ) ( , ) ( , , ). ( , )]

h t T C t T P t Tk i l j k i k l k lV

d t T T t t T T t dvk l k l k

ψ= ∫

− − ∇

x x x

x x u x x
        (11c) 

 
* *( , ) ( , )[ . . ], , , ,q t T T t k C k C dvk i l j k i k ik k k k kV
ψ ψ= ∇ ∇ +∇ ∇∫ x

(11d) 
 

( , )*( , ) ( , , ){ ( , , )[ ( ), , ,

( ) ( , , ),( , ) ] ( , ) ( ) },

T tkg t T k t T C t Tk i l j k ik l k lS
C t Tk i k lT t T t dsk ik k

ψ

ψ
ψ

∂
= −∫

∂
∂ ∂

−
∂ ∂

x
x x x

n
x x

x x x
n n

(11e) 
 

 The coefficient vector containing the eigenfunction divergent 
contribution may also be rewritten more conveniently for 
computational purpose in the form: 
 

* *( , ) ( , )[ . . ], , ,

( , )(2 ).( ),

( , ) .( ),

q t T T t k C k C dvk i l j k ik k k k kV
T t C C k dvk k k ik k k kV
T t C k dvk k ik k kV

ψ

γ γ ψ

γ ψ

= ∇ ∇ +∇ ∇ +∫

∇ + ∇ ∇ +∫

∇ ∇∫

x

x

x

  (11f) 

The eigenvalue problem, eq.(3a), can be employed to further 
simplify this vector, as: 
 

, , ,

,

2
,

* *( , ) ( , )[ . . ] ( )

( , )(2 ).( ( ))

( , ) ( )

k i l j k k i
V

k k k i
V

i k k i
V

q t T T t k C k C C d dvk k k k k k k

T t C C k dvk k k k

T t C w dvk k k

γ ψ

γ γ ψ

µ γ ψ

= ∇ ∇ +∇ ∇ + +

∇ + ∇ ∇ −

∫

∫

∫

x x

x x

x x

(11g) 
 

where, 
 

( , ,
( , ,

(

* )
)

)

t T
t T

kk l
k l kk
γ =

x
x

x
                                  (11h) 

 
The boundary source term contribution can be written explicitly 
by manipulating the two boundary conditions, for the original 
and auxiliary problems, eqs.(9d) and (3b), respectively, to 
yield: 
 

,
,

, ,

,

( )
( ) ( )

( , ) ( , , )[ ]
( ) ( )

( , , )* ( , , ) ( , ) ( )

k i
k i

k i l j
S

k i
S

kkg t T C t T dsk k k l
k k

C t Tk lk t T T t dsk l k

ψ
ψ

γ φ
α β

ψ

∂
−

∂=
+

∂
−

∂

∫

∫

x
x x

nx
x x

x
x x x

n
(11i) 

Though formal and exact, the above manipulation to account 
for the boundary conditions source terms introduces some 
additional complexity due to the requirement of evaluating 
derivatives of the nonlinear coefficient ( , , )xC t Tk l . 

Alternatively, one may prefer a more straightforward approach 
to find the contribution of the boundary source terms, as now 
described. Starting from eq.(10.b), we sum and subtract the 
contribution of the actual flux divergent term, i.e.: 
 

( ), *( )[ ( , , ) 1] . ( , , ) ( , ),

*( ) . ( , , ) ( , ),

* *( ) ( , , )[ ( , , ) ( , , ) ( , ),

( , , ). ( , )]

= − ∇ ∇ +∫

∇ ∇ +∫

−∫

− ∇

x x x x

x x x

x x x x x

u x x

dT tk i C t T k t T T t dvk i k l k l kdt V

k t T T t dvk i k l kV

C t T P t T d t T T tk i k l k l k l kV
t T T t dvl k

ψ

ψ

ψ

(11j) 
Now, the second Green formula is applied solely to the second 
term in the right hand side, which corresponds to the integral 
transformation of the original flux divergence term, in the form: 
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( ), *( )[ ( , , ) 1] . ( , , ) ( , ),

*( , ) . ( , , ) ( ),

( )( , ) ,* ( , , )[ ( ) ( , ) ],

* *( ) ( , , )[ ( , , ) ( , , ) ( , ),

= − ∇ ∇ +∫

∇ ∇ +∫

∂∂
− +∫

∂ ∂

−∫

−

x x x x

x x x

xx
x x x

n n

x x x x x

dT tk i C t T k t T T t dvk i k l k l kdt V

T t k t T dvk ik k lV
T t k ikk t T T t dsk ik l kS

C t T P t T d t T T tk i k l k l k l kV

ψ

ψ

ψ
ψ

ψ

( , , ). ( , )]∇u x xt T T t dvl k
(11k) 

Therefore, the alternative transformed system can be written in 
the short form below: 
 

( ), ˆ ( , ), 0, 1, 2,..., , 1, 2,..., ,= > = =
dT tk i h t T t k M ik i l jdt

   

(11l) 
 

where the vector , ,
ˆ ( , ),k i l jh t T is now formed by the three new 

contributions below: 
 

ˆ ˆ* ˆ ˆ( , ) ( , ) ( , ) ( , ), , , , , , , ,= + +h t T h t T q t T g t Tk i l j k i l j k i l j k i l j   (11m) 

 
with, 
 
ˆ* *( , ) ( )[ ( , , ) 1] . ( , , ) ( , ), , ,

* *( ) ( , , )[ ( , , ) ( , , ) ( , ),

( , , ). ( , )]

= − ∇ ∇ +∫

−∫

− ∇

x x x x

x x x x x

u x x

h t T C t T k t T T t dvk i l j k i k l k l kV

C t T P t T d t T T tk i k l k l k l kV
t T T t dvl k

ψ

ψ

        (11n) 
 

*ˆ ( , ) ( , ) . ( , , ) ( ), , ,= ∇ ∇∫ x x xq t T T t k t T dvk i l j k ik k lV
ψ             (11o) 

 
( )( , ) ,*ˆ ( , ) ( , , )[ ( ) ( , ) ], , ,

∂∂
= −∫

∂ ∂

xx
x x x

n n

T t k ikg t T k t T T t dsk i l j k ik l kS

ψ
ψ

                (11p) 
 
The alternative transformed system offered by eqs.(11l)-(11p) 
involves more stratightforward final expressions, especially in 
avoiding derivatives of the nonlinear coefficients in the original 
transient term. Eqs.(11a) or (11l) require the transformed initial 
conditions for each potential, upon integral transformation of 
eq.(1.b) with ,( ) ( ) −∫ x xk k i

V

w dvψ , to find: 

 

, ,(0) ( ) ( ) ( )k i k k i k
V

T w f dvψ= ∫ x x x                       (11q) 

 
Eqs.(11l) to (11q) form an infinite coupled system of 

nonlinear ordinary differential equations for the transformed 
potentials, , ( ),k iT t  which is unlikely to be analytically solvable. 
Nevertheless, fairly reliable algorithms are readily available to 
numerically handle this ODE system, after truncation to a 
sufficiently large finite order. The Mathematica system [31] 
provides the routine NDSolve for solving stiff ODE systems 
such as the one here considered, under automatic relative error 
control. Once the transformed potentials have been numerically 
computed, the Mathematica routine automatically provides an 
interpolating function object that approximates the t variable 
behavior of the solution in a continuous form. Then, the 
inversion formula can be recalled to yield the potential field 
representation at any desired position x and time t (or 
equivalent space coordinate). 

FILTERING SOLUTION 
 

The formal solution above derived provides the basic 
working expressions for the integral transform method. 
However, for an improved computational performance, it is 
always recommended to reduce the importance of the equation 
and boundary source terms so as to enhance the eigenfunction 
expansions convergence behavior.  

One possible approach for achieving this goal is the 
proposition of analytical filtering solutions, which essentially 
remove information from the source terms into a desirably 
simple analytical expression. Several different alternative filters 
may be proposed for the same problem, and the user experience 
may be quite helpful in finding the right combination of 
analytical involvement and numerical improvement. 
Nevertheless, the filter is in general means proposed as: 

 
*( , ) ( , ) ( ; ),T t T t T tk k k f= +x x x                            (12) 

 
where the variable t is a parameter in the filter solution 
proposition, , ( ; )k fT tx . 
 The net effect of the filter is to provide a new filtered 
problem, with reduced importance of the original problem 
source terms, written as: 
 

*( , )
( )

* * * *( , , )[ . ( , , ) ( , ) ( , , ) ( , )

*( , , ). ( , ) ( , , )], , 0,

T tkwk t

C t T k t T T t d t T T tk l k l k k l k

t T T t P t T V tl k k f l

∂
=

∂

= ∇ ∇ −

− ∇ + ∈ >

x
x

x x x x x

u x x x x

     (13a) 

 
where the filtered source term is given by 
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( , , ( , , ( , , ( , )

( , )
( , , ( , ) ( , , ( , )

* *) ) . ), ,

( ) ,* ) )., ,
k

t T t T t T T t

T t
t T T t t T T t

t

P P kk f l k l k l k F

w k fkdk l k f l k f C

=

∂
− − −

∂

+∇ ∇

∇

x x x x

xx
x x u x x

      

(13b) 
 
with initial and boundary conditions 
 

* *( ,0) ( ) ( ) ( ,0),,T f f T Vk k k k f= = − ∈x x x x x                      (13c) 

 
*( , )*( ) ( , ) ( ) ( ) ( , , ),,

T tkT t k t T Sk k k k k f lα β φ
∂

+ = ∈
∂

x
x x x x x x

n
   (13d) 

 
where, 

( , ),( , , ) ( , , ) ( ) ( , ) ( ) ( ), ,

T tk ft T t T T t kk f l k l k k f k kφ φ α β
∂

= − −
∂

x
x x x x x x

n
(13e) 

 
Thus, the above formal solution applies directly to the 

following filtered problem, once the initial conditions, the 
equation and boundary source terms have been adequately 
substituted. 

APPLICATION 
 

 We consider forced convection heat transfer inside a 
circular tube for incompressible laminar flow of a Newtonian 
liquid with temperature dependent thermophysical properties, 
including viscosity, thermal capacitance, and thermal 
conductivity. The tube is subjected to a prescribed uniform wall 
heat flux, with uniform inlet temperature and negligible viscous 
dissipation effects. This problem has a strong practical 
motivation [32] with a renewed interest due to more recent 
applications in forced convection such as microchannels and 
nanofluids [33]. 
 The related energy equation and inlet and boundary 
conditions are written as: 
 

( , )
, , 0

1 ( , )( ) ( ) ( , ) ( ) 0 w
T r z

z
z

T r zT c T u r T rk T r rp r r r
ρ ∂

= >
∂

∂ ∂⎡ ⎤ < <⎢ ⎥∂ ∂⎣ ⎦
    

(14a) 
 

( ,0) , 00T r T r rw= ≤ ≤                      (14b) 
 

( , ) ( , )
0, 0; ( ) , , 0

T r z T r z
r k T q r r zwwr r

∂ ∂
= = − = − = >

∂ ∂
  (14c) 

 
where the temperature dependent fully developed velocity 
profile is  obtained by direct integration  of the momentum 
equation [34]: 

              
1 ( )( , )( ) , 0 , 0dp zu r zr T r r zwrr r dz

µ∂ ∂⎡ ⎤ = < < >⎢ ⎥∂∂ ⎣ ⎦
             (15a)               

 
( , ) 0, 0; ( , ) 0, , 0u r z r u r z r r zwr

∂
= = = = >

∂
  (15b) 

 
The following dimensionless groups are then defined: 

 
              

0
2

0 0

2 0
0
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0
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= = =

−
= =

= −

w w

fd
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p fd

p w w

zr u r z
R Z U R Z

r u r u

u r kk T
U R

u k c

c u T r z T
C R Z

T c T u r T r k

R

r
q

α

γ θ α
ρ

ρ
θ θ

ρ

          (16) 

 
and the problem formulation in dimensionless form is given as 

 

   ( , ) ( , )
( ) ( ) , 0 1, 0( ) ∂ ∂ ∂

= < < >
∂∂ ∂

⎡ ⎤
⎢ ⎥⎣ ⎦

fd
R Z R Z

RU C R R Z
RZ R

R θ θ
θ γ θ     

(17a) 
 

( ,0) 0, 0 1R Rθ = ≤ ≤                             (17b) 
 

( , ) ( , )
0, 0; ( ) 1, 1, 0

R Z R Z
R R Z

R R
θ θ

γ θ
∂ ∂

= = = = >
∂ ∂

       (17c) 

 
The following filtering solution is proposed: 
 

2
( )

2
R

Rfθ =                                   (18a) 

with 
*( , ) ( , ) ( )R Z R Z Rfθ θ θ= +                          (18b) 

 
Then the problem formulation becomes: 
 

    
* *( , ) *( ) ( ) ( ) ( ), 0 1, 0

⎡ ⎤∂ ∂ ∂⎢ ⎥= + < < >
∂∂ ∂ ⎢ ⎥⎣ ⎦

fd
R ZRU R C R P R ZfRZ R

θ θθ γ θ θ  

(19a) 
 

2
*( ,0) , 0 1

2
R

R Rθ = − ≤ ≤                        (19b) 

 

  
* *( , ) ( , ) 1

0, 0; 1 , 1, 0
( )

R Z R Z
R R Z

R R
θ θ

γ θ
∂ ∂

= = = − = >
∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(19c) 
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where, 
 

*
* 2( ) ( ) 2 ( )P C R R Rf R

γ θ
θ θ γ θ

θ
∂ ∂

= + +
∂ ∂

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

             (19d) 

 
The auxiliary problem is chosen as: 

 
( ) 2 ( ) 0, 0 1d Rd iR R R RiidRdR

ψ µ ψ⎡ ⎤ + = < <⎢ ⎥⎣ ⎦
       (20a) 

 
( ) ( )

0, 0; 0, 1
d R d Ri iR R

dR dR

ψ ψ
= = = =          (20b) 

 
which yields the solution 
 

( ) ( )0R J Ri iψ µ=                                   (20c) 
 

with eigenvalues obtained from 
 

( ) 0, 0,1, 2,...1J iiµ = =                              (20d) 
 
where 0 0µ = is also an eigenvalue, and the normalization 
integral is given by 
 

1 2( )02
N Ji iµ=                                     (20e) 

 
while the normalized eigenfunctions result in 
 

( )0( ) 2
( )0

J RiRi J i

µ
ψ

µ
=                               (20f) 

 
The integral transform pair is then given by: 

*( , ) ( ) ( ),
0

R Z R Z inversei ii
θ ψ θ

∞
= ∑
=

          (21a) 

 
1 *( ) ( ) ( , ) ,0Z R R R Z dR transformi iθ ψ θ= ∫   (21b) 

 
 The integral transformation process leads to the 
following ODE system: 
 

,
1

( ) ˆ ( , ), 0, , , 0,1, 2,...
∞

=

= > =∑ i j l
j

d Zj h Z Z i j lidZ
a

θ
θ         (22a) 

 
(0) fi iθ =                                         (22b) 

 
where, 
 

*
1ˆ *( , ) 0[ ( ) 1] ( )( ) ( )= ∫

⎛ ⎞∂ ∂
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ih Z dRi j C R R R
R R

θ
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(22c) 
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0
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2
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i j
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θ γ θ θ
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where, 
 

( ) ( )∂ ∂ ∂
=

∂ ∂ ∂R R
γ θ γ θ θ

θ
                                (22f) 

 
or in terms of the more detailed expressions  
 

2 *1 *

0

212 *

0
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2

( )[ ( , ) ] ( )
2

∂ ∂
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∫

∫

i
i j

i i
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R dR
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ψγ θ θθ θ
θ

µ γ θ θ ψ

(22g) 
 
with the transformed inlet conditions 
 

1 3

0

1 ( )
2i if R R dRψ= − ∫                             (22h) 

 
Also, the linear coefficients matrix in the transient term is 
readily computed in analytic form, and inverted only once to 
provide the desired explicit transformed system for numerical 
solution. The coefficients are obtained from: 
 

1

, 0
( ) ( ) ( )= ∫i j fd i ja RU R R R dRψ ψ                             (22i) 

 
The dimensionless velocity field is given by direct integration 
of the momentum equation in the form: 
 

1

0

1 1

0 '

' '
1 ( )( , ) ''2 ' ' ' '

( )R

R dR
U R Z RR dR dR

θ

θ

Λ=

Λ

∫

∫ ∫
                              (23a) 

 
where the dimensionless viscosity is written as, 
 

( )( )
0

Tµθ
µ

Λ =                                           (23b) 
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RESULTS AND DISCUSSION 
 

The proposed approach was implemented in the 
mixed symbolic-numerical platform Mathematica 5.2 [31] and 
a few representative results were obtained to illustrate the 
convergence behavior of the eigenfunction expansions. An 
actual physical situation dealing with internal forced convection 
of water-alumina nanofluids was considered [35], and the code 
was employed to investigate the influence of variable 
thermophysical properties in the heat transfer enhancement 
attributed to nanofluids undergoing forced convective heating. 
Here we selected one case employed in the validation with pure 
water laminar flow with the following pertinent data:  

 
2

w w

o o
0 0 0

7 2 7 2
0 0

r 0.00315 m; q 6891.3 W/m ; L 2.45m;

u 0.159 m/s; T 21.9 C; k 0.6 W / m C;

1.436 x10 m / s; 9.584 x10 m / s− −

= = =

= = =

α = ν =

 

The resulting Reynolds number is around Re=1380 and the 
Prandtl number is Pr=6.67. All the thermophysical properties 
were allowed to vary with temperature, including viscosity and 
its corresponding effect on the velocity field. A few selected 
positions at the external wall along the tube were taken 
corresponding to thermocouple locations, and are here used to 
illustrate the convergence behavior of the eigenfunction 
expansion implemented.  
Thus, Table 1 shows the convergence behavior of the 
dimensionless duct wall temperature at the chosen 
dimensionless axial positions. The maximum system truncation 
order is taken as N=10 and NI=38 segments are employed in 
the semi-analytical integration of the system coefficients 
vectors [36]. Also shown in the last column are the results from 
an approximate numerical solution obtained by linearizing the 
velocity field with the temperature distribution obtained from 
the linear problem formulation while retaining the other 
thermophysical properties as temperature dependent. This 
approximate formulation was solved with the aid of the 
Mathematica system routine NDSolve, which implements a 
numerical solution via the Method of Lines [31]. 
 
Table 1- Convergence of dimensionless duct wall temperature 

at different axial positions, Z (N<10, NI=38 segments). 
Z     N 2 4 6 8 10 Num.* 
0.0013 0.1366 0.0968 0.0936 0.0951 0.0958 0.0838 
0.0179 0.2629 0.2749 0.2782 0.2783 0.2782 0.2823 
0.0353 0.3453 0.3633 0.3642 0.3640 0.3639 0.3662 
0.0699 0.4686 0.4837 0.4836 0.4832 0.4830 0.4848 
0.1080 0.5762 0.5866 0.5860 0.5855 0.5852 0.5874 
0.1480 0.6733 0.6800 0.6792 0.6786 0.6782 0.6812 
0.1807 0.7452 0.7499 0.7490 0.7483 0.7479 0.7516 
0.2180 0.8229 0.8261 0.8250 0.8242 0.8237 0.8286 
(*) NDSolve routine – Method of Lines (linearized velocity field) [31] 
 
Clearly, the integral transform results with truncation orders up 
to 10, already offer a convergence to the third decimal digit in 

the dimensionless wall temperature along the duct length. On 
the other hand, the simplified formulation and numerical 
solution does not seem to offer accurate results at regions close 
to the inlet, though improving to a two digits agreement with 
the  GITT solution for regions closer to the channel outlet.  
 Figure 1 below illustrates the dimensionless 
temperature radial distributions along the channel length, for 
the same axial locations as considered in Table 1, which are 
here represented by colors ranging from pure blue to pure red 
(Z=0.0013, 0.0179, 0.0353, 0.0699, 0.1080, 0.1480, 0.1807, 
0.2180). The solid lines correspond to the full nonlinear 
formulation here considered while the dashed lines are obtained 
from the classical linear formulation of Graetz problem. As 
expected the deviations are more significant within the regions 
of larger temperature gradients, corresponding to regions closer 
to the wall and as the fluid heating progresses. Also, the heat 
transfer enhancement effect may be observed in the reduction 
of the duct wall temperatures as the nonlinear properties are 
accounted for, especially due to the reduction of the viscosities 
close to the hotter duct wall, with the subsequent fluid 
acceleration in this region. 
 
 

 
 

Figure 1- Dimensionless radial temperature distributions for 
linear (dashed lines) and nonlinear (solid lines) formulations 
and axial positions increasing from blue to red (Z=0.0013, 
0.0179, 0.0353, 0.0699, 0.1080, 0.1480, 0.1807, 0.2180). 

 

CLOSING REMARKS 
 

The present analysis unifies previous developments 
on the hybrid numerical-analytical approach named the 
Generalized Integral Transform Technique (GITT), as applied 
to the solution of convective heat and mass transfer problems in 
various different situations of cavity, external and duct flows. 

The proposed formulation includes nonlinearities in 
all equation and boundary conditions coefficients and source 
terms, so as to allow for the direct simplification of the final 
derived expressions for every each specific application. Also, 
the methodology here advanced introduces a strategy to avoid 
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nonlinear implicit transformed ODE systems, by rewriting the 
problem formulation in explicit form with respect to the highest 
derivative of the dependent variable not eliminated by integral 
transformation. In this way, an explicit transformed system 
results which allows for computational savings in the available 
numerical solvers for initial value problems, since the inversion 
of a nonlinear coefficients matrix is avoided. 

Finally, an example of thermally developing forced 
convection in laminar tube flow of liquids is considered for 
illustrating the use of the derived expressions, involving all of 
the thermophysical properties, viscosity, thermal conductivity 
and thermal capacitance, with temperature dependence. 

The hybrid solutions here developed are part of a 
wider on-going effort in the construction of an unified integral 
transforms simulation platform (UNIT Project) for diffusion 
and convection-diffusion problems [37]. 
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NOMENCLATURE 
 

cp- specific heat of the fluid [J/kgC]; k -thermal conductivity of 
the fluid [W. m-1 .K-1], Pr- Prandtl number; qw

 - imposed heat 
flux at duct wall[W/m²]; rw

 – tube radius [m]; Re- Reynolds 
number, T0- inlet temperature [°C]; T- fluid temperature [°C]; 
u- fully developed velocity [m.s-1]; u0- average velocity [m.s-1]; 
U-dimensionless longitudinal velocity; z -longitudinal 
coordinate [m]; Z- dimensionless longitudinal coordinate; r- 
radial coordinate [m]; R- dimensionless radial coordinate; 
Greek letters: •- thermal diffusivity for the fluid [m2.s-1]; •-
dimensionless temperature (fluid); •- kinematic viscosity 
[m².s-1]; µ- absolute viscosity [kg.m.s-1]; ρ- fluid specific mass 
[kg/m3]; Λ – dimensionless viscosity; 
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