

PROJETO DE COOPERAÇÃO SUL-AMERICANA EM IDENTIFICAÇÃO DE PROPRIEDADES FÍSICAS EM TRANSFERÊNCIA DE CALOR E MASSA Programa CNPq/PROSUL

MINI-CURSO IDENTIFICAÇÃO DE PROPRIEDADES FÍSICAS

Infrared thermography for thermal characterization

Olivier Fudym

SODEE UM<mark>R 23</mark>92 CNRS

Dec. 5-8, 2006, Curitiba, Brazil

11th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2006 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Curitiba, Brazil

RAPSODEE UMR 2392 CNRS

Chemical Engineering Laboratory for Finely Divided Solids, Energy & Environment

- South West of France
- Ministère de l'Economie, des Finances, et de l'Industrie
- Civil Engineers (Major in Chemical Engineering)

IR Imaging Systems : a widespread technic !!!

Multispectral imagery

Aircraft signature

Electrical control

Building inspection

Security control

Microcomponent analysis

Skin & Fever

Vascular

Art restoration

Underground Landmines Detection from Thermal Imaging

Thermal Radiation

1µm = 1 micromètre =0.000001m

spectre visible : 0.4 µm = violet -bleu 0.47µm = bleu 0.55µm =vert- jaune 0.65µm = rouge..

Black body spectral radiance

Calibration : Black body

Signal

camera

50 100

150

V₁₅₀

 V_{100}

V₅₀

After calibration, the optical properties are necessary in order to measure the surface temperature of the sample :

(T)

Infrared measurement : typical situation

3-5 μ m 8 - 12 μ m \leftarrow Outdoor measurments

Spectral Range of measurements

Infrared thermography

Λ

Thermal-sensitivity depends strongly on Temperature !!!

Spatial resolution

Line spread function (LSF)

Recorded image = *LSF* * *original image*

Slit response function(SRF)

 $m = max(R(w)/max(R(w \rightarrow)))$ as a function of w/L

Example SRF

Apparent resolution = 210 mm / 105 px -> 2 mm / px

Focal Plane Array : matrix of sensors

≥ Sensor : InSb, InGaAs, MCT, microbolometric...

Focal plane Array: 640x512 pixels or 320x256 pixels

- ₹ Typical : 150 400 Hz !!!
- **≥** thermal sensibility 30 °C: < 20 mK InSb, MCT

< 85 mK µbolometric

C Spectral Sens. : 1 - 5 μm or 3 - 5 μm (InSb), 8 - 12 μm

- ≥ Integration time: about 10 µs
- One pixel Sensor = 30 μm

Linear least squares Maximum likelihood Estimator

 $\mathbf{T} = \mathbf{X}\boldsymbol{\beta}$

Hypothesis :

- zero mean and additive errors

- β constant and unknown before the estimation and X_{ij} known without error

- constant variance (σ known) and uncorrelated errors

 $S = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{t} . (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$

Estimator $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{t}\mathbf{X})^{-1}.\mathbf{X}^{t}\mathbf{Y}$ **Estimation error** $cov(\mathbf{e}_{\boldsymbol{\beta}}) = (\mathbf{X}^{t}\mathbf{X})^{-1}.\sigma^{2}$

Example : Non-Stationary Signal -Estimation of one parameter

$$\begin{bmatrix} T_{1} \\ T_{2} \\ \vdots \\ \vdots \\ T_{N} \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ \vdots \\ f_{N} \end{bmatrix} \beta \qquad \qquad \hat{\beta} = \frac{\sum_{i=1}^{N} f_{i} \hat{T}_{i}}{\sum_{i=1}^{N} f_{i}^{2}} \qquad \qquad \sigma_{\beta}^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{N} f_{i}^{2}} \\ \|f(t)\| = \sqrt{\int_{0}^{t_{\max}} f^{2}(t) dt} \qquad \qquad \sigma_{\beta}^{2} = \frac{t_{\max} \sigma^{2}}{N \|f\|^{2}}$$

-If N small, T_i must be chosen as f is maximum

- T_i regularly spaced, N must be chosen as great as possible!

Estimation of several parameters

(f and g assumed to be orthogonal)

-
$$T_i$$
 regularly spaced, N must be chosen as great as possible!
-The conditioning number is non-dependent on N ! 17

Imaging Systems with « matrix » of sensors

