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INTRODUCTION (i)

• Generalities: Heterogeneous Media

Let us convince ourselves, simultaneously, that the 
heat transfer problem in heterogeneous media, in a 
general context, and the heat conduction problem in 
composite materials, in a specific context, are 
extremely old, relevant, challenging, interesting, and 
current problems!

We would like to understand, in fact, the 
macroscopic behavior of such media or materials, 
which depend on their ‘effective properties.’



Pioneering work by Lord 
Rayleigh, Phil. Mag., 1892.

Classical extension of 
Rayleigh’s method, 1979.



A mathematician works on the 
problem, invoking the ‘self-
consistent’ hypothesis, 1983.



Classical model 
for the effective 
conductivity of 
frost, 1987.



Schematic and micrograph of uniaxial
carbon-fiber composite, 1987.



Experimental 
and analytical 
(equivalent 
inclusion 
method) 
work, 1992.



Theoretical model accounting for 
radiation and conduction, 2000.



Experimental 
measurements of 
radiative (and 
conductive) 
properties, 2000.



Experimental 
measurements of 
effective conductivity of 
heat pipe wicks, 2004.



DIB: 2-D 
computational 
technique, 2004.



Same multiscale modeling 
approach for thermal and 
mechanical properties of 
composites for cryogenic 
applications, 2006.



• Objectives
Development and application of a multiscale theoretical-
computational approach to calculate the effective conductivity 
of composite materials with 2-D or 3-D microstructures, and 
with or without the presence of voids, and of an interfacial 
thermal resistance between the constituent phases.

• Motivation
Engineering applications of composite materials in various 
industries (electronic equipment, aerospatial, nuclear etc.).
�Relatively easy to fabricate.
�Low cost and low weight.
�Desirable/tailorable mechanical, thermal, and electrical 

properties (stiffness, resistance to corrosion and wear, 
thermal expansion coefficient, electrical and thermal 
conductivity, dielectric constant).

INTRODUCTION (ii)



• Problem of interest
Steady state heat conduction in composite materials.

• Definition of composite materials
�Fabricated heterogeneous media with two or more phases 

that possess distinct macroscopic properties.
�Continuous phase: matrix (constituted by metallic, organic, 

or ceramic materials).
�Dispersed phase: particles and/or fibers (silicon carbide, 

aluminum oxide, carbon, graphite), voids.
• ‘Classification’ of composite materials

�Particulate (particles, [approx.] spherical, ellipsoidal etc.).
�Fibrous (e.g., fibers with axisymmetric geometry).
�Hybrid (mixture of particles and fibers).

INTRODUCTION (iii)



Book on carbon fiber composites: 
thermal applications and issues, 1994.



• Effective thermal conductivity (second order tensor)
“Ratio” between volumetric mean of heat flux to volumetric 
mean of temperature gradient for a representative volume 
element (Milton, 2002):

(m – matrix; d – dispersed phase)

q(x) dV =

INTRODUCTION (iv)



• Microstructure
Geometrical arrangement of the composite phases; charac-
terized by the volume fraction and by the spatial, size, 
orientation, and shape distributions of the dispersed phase(s) 
inside the matrix; the microstructure may or may not be 
statistically homogeneous (� dispersed phase volume 
fraction independent of position).

• Classification for modeling purposes
�With respect to spatial distribution of the phases:

�Ordered (distribution function is ‘trivial’);
�Random (distribution function is ‘non-trivial’).

�With respect to periodicity:
�Periodic (representative volume element, or cell, 

repeats itself along the spatial directions);
�Non-periodic.

INTRODUCTION (v)



• Illustration of 2-D microstructures
(dispersed phase: cylinders of ‘infinite’ length)

INTRODUCTION (vi)

one-particle cell

multi-particle cells



• Illustration of 3-D microstructures
(dispersed phase: spheres)

INTRODUCTION (vii)

one-particle 
cell multi-particle 

cells



Classical review, 1976.

micrograph of tooth

microstructural
geometries



Determination of properties 
of fibers using ‘composite 

theory,’ 1982.

optical micrograph



• Interfacial thermal resistance
�Origin: fabrication process.
�Causes: poor mechanical and/or chemical adherence; 

presence of impurities and roughness; difference between 
the thermal expansion coefficients of the phases; cracks.

�Effect: jump of the temperature field at the interface 
between the phases (barrier to heat conduction).

�Definition/model: ratio between the temperature jump to 
the heat flux at the interface:

INTRODUCTION (viii)

;



Evidence of interfacial debonding
and matrix cracking, 1991.



Measurements of effective  conductivity, acknowledging 
presence of interfacial resistance and voids, 1999, 2001.



Critique of previous 
approaches, 1999, 2001.



2-D ANSYS simulation 
accounting for interfacial 
resistance, 2003.



issue of boundary conditions



• Characteristics of composite materials
�Presence of large number of particles or fibers.
�Very disparate length scales:

�MACROSCALE: physical dimension of the composite 
body (m � cm);

�MesoScale: characteristic dimension of the composite 
microstructure, RVE or cell (mm � �m);

�microscale: characteristic dimension  of the 
particles/fibers (�m).

• Heat conduction in composites
�Transport problem in multiple scale media.
�Difficult direct application of conventional analytical and 

numerical methods.
�Difficult determination of local temperature fields.
�Macroscopic thermal behavior of a composite may be 

described, once the effective conductivity is known.

INTRODUCTION (ix)



• Bound methods
(Milton, 2002; Torquato, 1991; Nomura & Chou, 1980)

�Rigorous determination of lower and upper bounds.
�General spatial correlation functions for the microstructure.
�Do not agree well with experimental data when phase 

contrast (e.g., conductivity ratio) is high.
• Analytical and semi-analytical methods

(Cheng & Torquato, 1997; Furmañski, 1991; Sangani & Yao, 1988;  
Sangani & Acrivos, 1983; Perrins et al., 1979)

�Simple geometries (e.g., spheres, ellipsoids).
�Dilute limit (low dispersed phase volume fractions).
�May treat random distributions of particles.

BRIEF LITERATURE REVIEW (i)



• Phenomenological approaches
(Dunn et al., 1993; Hasselman et al., 1993; Benveniste et al., 1990; 
Hatta & Taya, 1986; Hashin, 1968)

�Simplifying heuristic assumptions: mean field concept of 
Mori-Tanaka, equivalent inclusion method of  Eshelby.

�Distributions of orientation and aspect ratio of fibers.
�Interactions of neighboring fibers are neglected.
�Most works assume perfect thermal contact. 
�Expressions for the effective thermal conductivity “valid”

for low to moderate dispersed phase volume fractions.

BRIEF LITERATURE REVIEW (ii)



• Computational approaches

(Matt & Cruz, 2006; Duschlbauer et al., 2003; Matt & Cruz, 2002; Matt 
& Cruz, 2001; Rocha & Cruz, 2001; Ingber et al., 1994; Veyret et al., 
1993; James & Keen, 1985)

�Flexibility to incorporate geometrical and physical effects.

�Mostly restricted to 2-D microstructures.

�Microstructure must be prescribed.

�FEM, FDM, BEM.

�So far, not systematically applied to 2-D and 3-D 
composites with realistic geometrical and physical 
features.

BRIEF LITERATURE REVIEW (iii)



• Experimental measurements
(Jiajun & Xiao-Su, 2004; Garnier et al., 2002; Mirmira & Fletcher, 
2001; Mirmira, 1999)

�The truth: complete physics, hard to fully characterize.
�Criticism: majority of existing methodologies overestimate 

the effective thermal conductivity of composites.
�Estimation of interfacial thermal resistance.
�Estimation of volume fraction of pores inside the matrix.
�Information about shape and orientation of fibers.
�Still: difficult comparison with theoretical/numerical 

predictions.

BRIEF LITERATURE REVIEW (iv)



• Physical description

composite with 3-D microstructure

HEAT CONDUCTION IN COMPOSITES (i)



• Mathematical formulation, dimensional strong form

HEAT CONDUCTION IN COMPOSITES (ii)

governing 
equations

boundary 
conditions



• Mathematical formulation, non-dimensional strong form

HEAT CONDUCTION IN COMPOSITES (iii)

magnitude of interfacial 
thermal resistance



• Mathematical formulation, weak form
�Advantages of weak form

�Boundary condition of continuity of heat flux at the 
interface is naturally imposed (� easy to incorporate 
voids).

�Compatibility with the finite element method.
�Definition of function spaces

HEAT CONDUCTION IN COMPOSITES (iv)

X’(�) allows jumps at the interface



• Mathematical formulation, weak form
�Statement

given �ij(y), Bi and G(y), find �(y) � X’(�) such that

HEAT CONDUCTION IN COMPOSITES (v)

in

in



• Homogenization theory
(Milton, 2002; Auriault & Ene, 1994; Auriault, 1991; Bakhvalov & 
Panasenko, 1989; Bensoussan et al., 1978; Babuska, 1975)

�Rigorous mathematical technique.
�Applied to a variety of transport phenomena in 

heterogeneous media.
�Exact solution behavior in the limit that the ratio of length 

scales tends to zero.
�Transforms the transport problem defined in the original 

heterogeneous medium in two easier problems to solve:
�homogenized problem;
�cell problem.

HEAT CONDUCTION IN COMPOSITES (vi)



• Homogenization theory
Schematic illustration of the method

HEAT CONDUCTION IN COMPOSITES (vii)

representative cell of 
microstructure (RVE)

homogeneous mediumheterogeneous medium



• Homogenization theory
Technique of asymptotic expansions using multiple scales
�Appropriate for transport problems defined in statistically 

homogeneous media that exhibit a natural separation of 
length scales:                     .

�Solution is written as a function of two variables:
�fast variable (mesoscale coordinate);
�slow variable (macroscale coordinate).

HEAT CONDUCTION IN COMPOSITES (viii)

(fast variable ) (slow variable )



• Application of the method
�Substituting the expansions for θ and v in the weak form...

�Homogenization condition:
(the heat generated internally to the composite must have the same 
order of magnitude of the heat conducted on the macroscale)

�Five models, depending on the magnitude of the interfacial 
thermal resistance (Rocha & Cruz, 2001; Auriault & Ene, 1994)

HEAT CONDUCTION IN COMPOSITES (ix)

Here: Model II, a = 0.



• Application of the method
�Grouping equal powers of ε...

HEAT CONDUCTION IN COMPOSITES (x)



• Application of the method
�Choosing, first, v0

II = 0 and, next, v1
II = 0...

v0
II = 0

v1
II = 0

HEAT CONDUCTION IN COMPOSITES (xi)



• Application of the method
�Assuming separation of variables for θ1

II(x,y)...

�Applying the periodicity property to the volume integrals 
(Auriault, 1991; Rocha & Cruz, 2001) and surface integrals 
(Rocha & Cruz, 2001)...

HEAT CONDUCTION IN COMPOSITES (xii)

representative volume element (RVE) of microstructure 
(assumed periodic) or periodic cell

portion of phase interface inside �pc



• Results of the method

�Cell problem

�Homogenized problem

�Effective thermal conductivity tensor

HEAT CONDUCTION IN COMPOSITES (xiii)



• Geometrical models for the periodic cell
�Ordered arrays of spheres

�Disordered arrays of spheres

NUMERICAL METHODS (i)

voids

one-particle 
cell

multi-particle cells



• Geometrical models for the periodic cell
�Ordered and disordered arrays of cylinders

NUMERICAL METHODS (ii)

one-particle 
cubic cell

one-particle 
parallelepipedonal cell

multi-particle cell

voids



• Mesh generation in 3-D
Procedure uses generator NETGEN (Schöberl, 2002)

NUMERICAL METHODS (iii)



• Mesh generation in 3-D
Procedure uses generator NETGEN (Schöberl, 2002)

NUMERICAL METHODS (iv)

f�p =



• Finite element discretization
�First order isoparametric

�Solution and geometry interpolated by 1o degree 
polynomials.

�Simple computational implementation.
�Volume and surface integrals can be evaluated 

analytically.
�Quadratic convergence of ke,ij .

�Accurate results for ke,ij > 100 only with excessive 
refinement of the mesh, a burden on computational 
time.

NUMERICAL METHODS (v)



• Finite element discretization
�Second order isoparametric

�Solution and geometry interpolated by 2o degree 
polynomials.

�More sophisticated computational implementation.
�Volume and surface integrals must be evaluated 

numerically.
�Cubic convergence of ke,ij .

�Accurate results for ke,ij > 100 without the need for an 
excessive refinement of the mesh.

NUMERICAL METHODS (vi)



• Finite element discretization
�Cell problem

NUMERICAL METHODS (vii)

bilinear operator, symmetric and positive-
definite

linear functional related to direction of temperature 
gradient imposed externally

bilinear and symmetric operator



• Finite element discretization
�Treatment of volume integrals

Galerkin Method (Reddy, 1993; Hughes, 1987)

NUMERICAL METHODS (viii)



• Finite element discretization

�Treatment of surface integral

�Duplication of degrees of freedom associated with 
global nodes situated on the interface �

�Modification of tetrahedra connectivity that possess at 
least one node on �

�Calculation of the jumps of the functions (weight, test) 
through the element surfaces on �

�Integration of the product of the jumps in �

�Sum of the resulting integrals to the appropriate 
components in the global stiffness matrix

NUMERICAL METHODS (ix)



BEFORE DUPLICATION

Duplication of degrees of freedom and
Modification of tetrahedra connectivity

AFTER DUPLICATION



• Contributions associated with node of vertex A
�Weight function restricted to node A

�Jump of weight function across �ee’

�Jump of temperature across �ee’

NUMERICAL METHODS (x)

0



• Contributions associated with node of vertex A

NUMERICAL METHODS (xi)

sum to component KAA



• Algorithm

For each node situated on �
�Identification of neighboring nodes (corner and median)
�Identification of its duplicates and of duplicates of 

neighboring nodes 
�Definition of weight function restricted to node and 

tetrahedra which share the node on �
�Calculation of jumps of weight and temperature functions  

across tetrahedra surfaces which share the node on �
�Evaluation of resulting integrals 
�Sum of resulting integrals to the appropriate components in 

the global stiffness matrix

NUMERICAL METHODS (xii)



• Discrete system of equations

NUMERICAL METHODS (xiii)

Global stiffness matrix and global forcing vector assembled 
from elemental matrices and elemental vectors, imposing 
periodic boundary conditions on the outer surfaces of �pc



• Iterative method (global minimum residual, GMRES, Paige 
& Saunders, 1975)

�Appropriate for linear systems of equations whose 
coefficient matrices are symmetric, but not necessarily 
positive-definite

�Stopping criterion: based on the norm L2 of the residual 
vector, subject to a user-prescribed tolerance 	

NUMERICAL METHODS (xiv)



• 2-D effort: smaller than the 3-D effort, and it is (still) 
valuable for random arrangements

• Simple cubic array of spheres with uniform interfacial 
thermal resistance (and, also, with perfect thermal contact)

• Disordered array of spheres with uniform interfacial thermal 
resistance and pores in the matrix (illustrative computations)

• Parallelepipedonal array of cylinders with uniform interfacial 
thermal resistance

• Tentative comparison with experimental data

RESULTS (i)









Extension 
to 3-D

cubic 
array



critical thermal contact resistance

0,71780,71801,43491,43490,60150,60161,30471,30470,51

0,72320,72341,42541,42550,60910,60921,29831,29830,50

0,74980,74991,37831,37830,64640,64651,26631,26630,45

0,77630,77641,33221,33210,68330,68341,23471,23460,40

0,80290,80301,28701,28700,72030,72031,20361,20360,35

0,82980,82991,24291,24280,75770,75771,17291,17280,30

0,85690,85691,19981,19970,79570,79571,14281,14280,25

0,88450,88451,15781,15770,83480,83481,11321,11310,20

0,91260,91261,11681,11680,87420,87421,08411,08410,15

0,94120,94121,07691,07680,91500,91501,05561,05560,10

0,97030,97031,03801,03790,95690,95691,02751,02750,05

R = 20000R = 5000R = 30R = 5

α = 10000, Rc = 9999α = 10, Rc = 9

c

Simple cubic array of spheres
Validation with semi-analytical results by Cheng & Torquato (1997)



Simple cubic array of spheres with uniform interfacial thermal resistance
Validation with semi-analytical results by Cheng & Torquato (1997)
Convergence plots of absolute error



particle thermal 
conductivity dominates

contact thermal 
resistance dominates

Simple cubic array of spheres
Distinct behaviors for the effective thermal conductivity as a function 
of the magnitude of the interfacial thermal resistance 



Disordered array of spheres with uniform interfacial 
thermal resistance and pores within the matrix 
(illustrative calculations, acurate: novelty!)



1,192010,9000,824010,9000,818210,900ρf, max = 14

1,19645,88270,82621,12140,82040,898113,5

1,20234,13710,82851,08390,82260,895612

1,192010,9000,824010,9000,818210,900

1,21602,39720,83490,99910,82860,89028

1,22831,93520,84010,96190,83350,88526

Bi = 102Bi = 10-1Bi = 10-6

ρf

c = 0,10, ρp = 5 e α = 100 

Parallelepipedonal array of cylinders

Validation with rule-of-mixtures results, and results from the 
expression by Hasselman & Johnson (1987) for unidirectional 
fibrous composites with low c



9,09425,030,1410,2784,36676,02200,14060,27850,70

5,24411,270,2490,3623,32924,55680,24920,36190,60

3,6276,9770,3540,4532,64413,57720,35410,45300,50

2,68474,85280,46130,55202,14322,86710,46130,55200,40

2,05403,56280,57430,65841,75682,31840,57430,65840,30

1,59902,66740,69710,77101,44901,86740,69710,77100,20

1,25861,95860,83560,88721,20051,46470,83560,88720,10

Bi = 104Bi = 10-6Bi = 104Bi = 10-6

α = 1000α = 10

c

Parallelepipedonal array ρp = ρf = 20

Parallelepipedonal array of cylinders

Sample of new results



COMPARISON WITH
EXPERIMENTAL DATA (tentative)

• Experimental work by Mirmira (1999)
�Measurements of longitudinal and transverse effective 

thermal conductivities of short fiber composites as a 
function of temperature

�Characteristics of composites 
�Matrix: cianate ester
�Dispersed phase: carbon fibers (DKE X, DKA X, 

K22XX)
�Fiber volume fractions in fabricated composites:              

55%, 65%  and 75%
�Aspect ratio of fibers: 20
�Pores volume fraction: 4% (estimation)
�Estimated interfacial thermal conductance: 105 W/m2 K
�Fibers are distributed in parallel planes and randomly 

oriented



COMPARISON WITH
EXPERIMENTAL DATA (tentative)

• Numerical results: application of developed methodology to 
the parallelepipedonal array of cylinders

• Analytical results: expressions for the effective 
conductivities obtained by various authors for arrays of 
cylindrical fibers randomly arranged in space



159,3057,0869,60106,0431,5562,1373,0067,9746,49373,15

148,7252,2870,0098,5228,8264,7067,6262,5648,22353,15

145,0650,6670,5095,9427,9065,0965,7860,7249,14333,15

141,3449,0471,0093,3226,9866,0663,9258,8749,64313,15

152,3153,8871,15101,0629,7366,5869,4464,3750,12293,15

Analit.Num.Exp.Analít.Num.Exp.Analít.Num.Exp.

75%65%55%

T (K)

Composites with DKA X type fibers (longitudinal conductivity)

Symbols: Exp. = experimental  Num. = numerical  Analít. = analytical (Dunn et al., 
1993)

COMPARISON WITH
EXPERIMENTAL DATA (tentative)



6,9215,377,744,675,868,803,413,636,65373,15

6,2914,007,794,255,338,803,103,306,75353,15

6,0813,557,794,105,158,973,003,196,76333,15

5,8813,097,813,964,989,082,903,086,80313,15

6,5014,467,834,395,519,103,213,416,80293,15

Analít.Num.Exp.Analít.Num.Exp.Analít.Num.Exp.

75%65%55%

T (K)

Composites with DKA X type fibers (transverse conductivity)

COMPARISON WITH
EXPERIMENTAL DATA (tentative)

Symbols: Exp. = experimental  Num. = numerical  Analít. = analytical (Dunn et al., 
1993)



Disordered array of cylinders with interfacial thermal
resistance and pores (cp = 0,5%) (novelty!)

Test case 1: a = 250 e Bi = 10
Test case 2: a = 250 e Bi = 10-6

Test case 3: k11 = k22 = k33 = 250, k12 = k13 = k23 = 200 e Bi = 10
Test case 4: k11 = k22 = k33 = 250, k12 = k13 = k23 = 200 e Bi = 10-6

1,0801,1801,2823

0,83360,84970,86504

0,83360,84970,86492

1,0831,1891,2991

Effective thermal conductivity c = 13% and ρf = 1,5

Test case



• Implementation of more representative 3-D geometric models 
for the microstructures of composite materials

• Implementation of variable interfacial thermal resistance on 
the surface of the fibers (Duschlbauer et al., 2003; Fletcher, 
2001)

• Appropriate treatment of microscale for analysis of 
configurations that are close to maximum packing

• Extension of developed methodology to determine effective 
mechanical properties of composite materials (for example, 
effective elastic modulus

• Consideration of the effect of properties varying with 
temperature

DOABLE FUTURE WORKS (i)
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Cálculo das contribuições associadas ao nó mediano M em ΓΓΓΓ

� Definição da função peso

� Cálculo do salto da função peso

� Cálculo do salto da função teste

0

somar ao componente KMA



CÁLCULO DAS INTEGRAIS DE SUPERFÍCIE RESULTANTES



• Finite element discretization
�Cell problem

NUMERICAL METHODS (vii)

bilinear operator, symmetric and 
positive-definite

linear functional related to direction of 
temperature gradient imposed externally

bilinear and symmetric operator



• Finite element discretization
�Treatment of volume integrals

Galerkin Method (Reddy, 1993; Hughes, 1987)

NUMERICAL METHODS (viii)



• Finite element discretization

�Treatment of surface integral

�Duplication of degrees of freedom associated with 
global nodes situated on the interface Gamma.

�Modification of connectivity of tetrahedra that possess 
at least one node on Gamma.

�Calculation of the jumps of the functions in the 
integrand through the element surfaces on Gamma.

�Integration of the products of the jumps over Gamma.

�Sum of the resulting integrals to the appropriate 
components in the global stiffness matrix.

NUMERICAL METHODS (ix)



BEFORE DUPLICATION

Duplication of degrees of freedom.
Modification of connectivity of tetrahedra.

AFTER DUPLICATION



• Contributions associated with node of vertex A
�Weight function restricted to node A

�Jump of weight function across Gammaee’

�Jump of temperature across Gammaee’

NUMERICAL METHODS (x)

0



• Contributions associated with node of vertex A

NUMERICAL METHODS (xi)

sum to component KAA



• Algorithm

For each node situated on Gamma

�Identification of neighboring nodes (corner and median).
�Identification of its duplicates and of duplicates of 

neighboring nodes.
�Definition of weight function restricted to node and to 

tetrahedra which share the node on Gamma.

�Calculation of jumps of weight and temperature functions  
across tetrahedra surfaces which share the node on Gamma.

�Evaluation of resulting integrals.
�Sum of resulting integrals to the appropriate components in 

the global stiffness matrix.

NUMERICAL METHODS (xii)



• Discrete system of equations

NUMERICAL METHODS (xiii)

Global stiffness matrix and global forcing vector are
assembled from elemental matrices and elemental 
vectors, imposing periodic boundary conditions on the 
outer surfaces of Omegapc.



• Iterative method
Global minimum residual, GMRES (Paige & Saunders, 1975)

�Appropriate for linear systems of equations whose 
coefficient matrices are symmetric, but not necessarily
positive-definite.

�Stopping criterion: based on the norm L2 of the residual 
vector, subject to a user-prescribed tolerance Sigma.

NUMERICAL METHODS (xiv)



• 2-D effort: ‘smaller’ than the 3-D effort, and it is (still) 
valuable for random arrangements.

• Simple cubic array of spheres with uniform interfacial 
thermal resistance (and, also, with perfect thermal contact).

• Disordered array of spheres with uniform interfacial thermal 
resistance and pores in the matrix (illustrative computations).

• Parallelepipedonal array of cylinders with uniform interfacial 
thermal resistance.

• Comparison with experimental data: still tentative!

RESULTS



Tool developed, but not 
systematically used.



Microscale models validated.



Microscale models useful.



Extension 
to 3-D

cubic 
array

Microscale
models can be 
useful in 3-D.



critical thermal contact resistance

0,71780,71801,43491,43490,60150,60161,30471,30470,51

0,72320,72341,42541,42550,60910,60921,29831,29830,50

0,74980,74991,37831,37830,64640,64651,26631,26630,45

0,77630,77641,33221,33210,68330,68341,23471,23460,40

0,80290,80301,28701,28700,72030,72031,20361,20360,35

0,82980,82991,24291,24280,75770,75771,17291,17280,30

0,85690,85691,19981,19970,79570,79571,14281,14280,25

0,88450,88451,15781,15770,83480,83481,11321,11310,20

0,91260,91261,11681,11680,87420,87421,08411,08410,15

0,94120,94121,07691,07680,91500,91501,05561,05560,10

0,97030,97031,03801,03790,95690,95691,02751,02750,05

R = 20000R = 5000R = 30R = 5

α = 10000, Rc = 9999α = 10, Rc = 9

c

Simple cubic array of spheres
Validation with semi-analytical results by Cheng & Torquato (1997)



Simple cubic array of spheres with uniform interfacial thermal resistance
Validation with semi-analytical results by Cheng & Torquato (1997)
Convergence plots of absolute error



particle thermal 
conductivity dominates

contact thermal 
resistance dominates

Simple cubic array of spheres
Distinct behaviors for the effective thermal conductivity as a function 
of the magnitude of the interfacial thermal resistance 



Disordered array of spheres with uniform interfacial
thermal resistance and pores within the matrix
Illustrative calculations, accurate: novelty!



1,192010,9000,824010,9000,818210,900ρf, max = 14

1,19645,88270,82621,12140,82040,898113,5

1,20234,13710,82851,08390,82260,895612

1,192010,9000,824010,9000,818210,900

1,21602,39720,83490,99910,82860,89028

1,22831,93520,84010,96190,83350,88526

Bi = 102Bi = 10-1Bi = 10-6

ρf

c = 0,10, ρp = 5 e α = 100 

Parallelepipedonal array of cylinders (Matt & Cruz, 2006)

Validation against rule-of-mixtures results, and results from the 
expression by Hasselman & Johnson (1987) for unidirectional 
fibrous composites with low c.



9,09425,030,1410,2784,36676,02200,14060,27850,70

5,24411,270,2490,3623,32924,55680,24920,36190,60

3,6276,9770,3540,4532,64413,57720,35410,45300,50

2,68474,85280,46130,55202,14322,86710,46130,55200,40

2,05403,56280,57430,65841,75682,31840,57430,65840,30

1,59902,66740,69710,77101,44901,86740,69710,77100,20

1,25861,95860,83560,88721,20051,46470,83560,88720,10

Bi = 104Bi = 10-6Bi = 104Bi = 10-6

α = 1000α = 10

c

Parallelepipedonal array ρp = ρf = 20

Parallelepipedonal array of cylinders

Sample of new results!



Disordered array of cylinders with interfacial thermal
resistance and pores (cpores = 0,5%) (novelty!)

Test case 1: a = 250 e Bi = 10
Test case 2: a = 250 e Bi = 10-6

Test case 3: k11 = k22 = k33 = 250, k12 = k13 = k23 = 200 e Bi = 10
Test case 4: k11 = k22 = k33 = 250, k12 = k13 = k23 = 200 e Bi = 10-6

1,0801,1801,2823

0,83360,84970,86504

0,83360,84970,86492

1,0831,1891,2991

Effective thermal conductivity c = 13% and ρf = 1,5

Test case



• Implementation of more representative 3-D geometrical 
models for the microstructures of composite materials.

• Implementation of variable interfacial thermal resistance on 
the surface of the fibers (Duschlbauer et al., 2003; Fletcher, 
2001).

• Appropriate treatment of microscale for analysis of 
configurations that are close to maximum packing.

• Extension of developed methodology to determine effective 
mechanical properties of composite materials (for example, 
effective elastic moduli).

• Consideration of the effect of properties varying with 
temperature.

DOABLE FUTURE WORKS



Temperature dependence.
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