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INTRODUCTION (i)

® Generalities: Heterogeneous Media

Let us convince ourselves, simultaneously, that the
heat transfer problem in heterogeneous media, in a
general context, and the heat conduction problem in
composite materials, in a specific context, are
extremely old, relevant, challenging, interesting, and
current problems!

We would like to wunderstand, 1n fact, the
macroscopic behavior of such media or materials,
which depend on their ‘effective properties.’



Pioneering work by Lord
Rayleigh, Phil. Mag., 1892.

LVL. On the Influence of Obstacles arranged in Rectangul
Order upon the Properties of a Medium, By Lerd RavLEiG “
Sec. R.8* : |

HE remarkable formula, arrived at almost simaltaneonsiy
by L. Lorenz t and H. A. Lorentz{, and. expressing thé
relation between refractive index and density, is well known §
but the demonstrations are rather difficult to follow, and th
limits of application are far from obvious. Indeed, in somf}
discussions the necessity for any limitation at all is ignoreds
I have thought that it might be worth while to cousider thi§
problem in the more definite form which it assumes when thg|
obstacles are supposed to be arranged in rectangular or squar§
order, and to show how the approximation may be pursuedg
when the dimensions of the obstucles are no longer very smalf§
in comparison with the distances between them.

Taking, first, the case of two dimensions, let us investigatef
the conductivity for heat,or electricity, of an otherwise uniforn§
medium interrupted by eylindrical vbstacles which are ar®
ranged in rectangular order., The sides of the rectangle wilf
be (ﬁanoted by «, B, and the radius of the cylinders by a. - T'hl,;
simplest cases would be obtained by supposing the mntenﬂ‘f{
composing the cylinders to be either non-conducting or pers:
fectly conducting ; but it will be sufficient to suppose that il
has a-definite conductivity different from that of the remainde
of the medium. : :

OO |
O | O O
ololo

Proc. R. Soc. Lond. A 369, 207-225 (. ClaSSical extension Of
Printed 1n Great Britain .
Rayleigh’s method, 1979.

Transport properties of regular arrays of cylinders

By W.T. Perrixs, D. R. McKENzIE AND R. C. MCPHEDRAN

School of Physics, University of Sydney, New South Wales 2008,
Australia

(Communicated by R. H. Brown, FR.S. - Received 20 February 1979 - |
Revised 22 May 1979}

We extend a method devised by Lord Rayleigh to enable the calculation
of the transport properties of eircular cylinders in square and hexagonal
arrays. The theory is confirmed by measurements on arrays of perfectly
conducting eylinders, and also is compared with asymptotic formulae due
to Keller (1963) and O’Brien (1977). Tt is used to furnish plots of equipoten-
tial lines within the array. It is also applied to the calculation of the optical
properties of films with columnar structure. Detailed studies for copper
films show both the good solar selectivity possible with voided structures

and the transition from a good reflector to a metal black consequent upon
structural changes. !

We give an analytic expression for the conductivity of this array in a similar form |
to Rayleigh (1892) based on square truncation to order N = 3: '

(- AL R

where 7' is again defined by equation (13).

"Theterm in curly brackets is the first correction term obtained from triangular
truncation for order N = 4. It is to be noted that Rayleigh failed to include the term
in round brackets in his analytic expression based on the same order of summation.””
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Thermal Conductivities of a Cracked Solid

ALAN HOENIG }
Department of Mathematics ‘
John Jay College of Criminal Justice
445 West 59th Street
| New York, New York 10019 ‘

(Received January 18, 1983)

ABSTRACT o

Formulas are presented which describe the effect of flat elliptical cracks on the effec-
tive thermal conductivity of an oinerwise homogeneous body. The cracks are assumed
randomly and isotropically distributed throughout the body, and may either be dry or.

composed of any material with a conductivity differing from that of the matrix. Effec-
tive conductivities depend solely upon a crack density parameter when the cracks are
dry, and additionally upon a saturation parameter and the crack planform aspect ra_t..ir:)_i

otherwise. e

A mathematician works on the
problem, invoking the ‘self-
consistent’ hypothesis, 1983.

ANALYSIS

An analogy exists between o, the electric conductivity, J and E, the current
and electric field vectors respectively, and between £, the thermal conductiv- ‘
ity, and g and grad 7, the vector heat flows and temperature. Notice that in
the governing equations describing the two phenomena, corresponding quan-
tities in the following lists play identical roles:

o i k
J i q
_ E i grad T
[ TJ=0E lg=kgrad T)
divJ/=10 E divg=20

In the same way; one can show that this analogous behavior persists in the
specification of boundary conditions [3]. These observations imply that con-
clusions about electric behavior apply to thermal problems when the substitu-

tions
J—+q
E—grad T | (1),
o~k ‘
‘are carried out. Hoenig [3] has presented a study of the effects of cracks on

the electrical conductivities of bodies. These results can be applied to thermal
problems by means of the above substitutinns. This analysis assumes that

‘heat transfer across dry cracks by radiaticn or convection will not take place. :

The problem of determining & in (2) has been reduced by the above com-
ments to the problem of evaluating the expression (grad T)/g for a single
crack and then averaging this expression over all orientations of the crack.
The process of evaluation must somehow take into account the influence of
the other cracks of the body; this is done by invoking a self-consistent
hypothesis, initially articulated by Budiansky [6] and Hill [7]. According to
their hypothesis, each crack in the matrix ‘sees’ itself as being embedded in an

uncracked body, characterized however by the as-yet-unknown effective con-

ductivity (that is, the macroscopic conductivity) of the cracked body. In this

manner, the difficult problem of evaluating the right-most factor of (2) in the
context of a crack subject to the complex influence of neighboring cracks is
replaced by the substantially simpler one of evaluating this factor by con-
sidering a single crack in a specially defined but homogeneous matrix. An im-
plicit assumption in this procedure is that the crack concentration is suffi-
ciently small so that the effect of crack intersections can be neglected.




1 It
HEAI AND MASS ‘ is useful to separate the different effects by defining indivi-

‘ dual thermal conductivities

TRANSFER ‘ o
\= = Fr/ax S5
IN REFR'GERATION‘ and to finally add all relevant individual conducztivities to ob=-

tain an effective thermal conductivity of frost.

. These few examples show that based on the criteria mentioned ab-
i ove only under extreme system conditions an influence of natural

convection may occur. Normally, in real situations, it can be

OHEMISPHERE PUBLISHING CORPORATION @}_‘\8?‘ neglected. However, one has to take into account, that criteria
. . | (15) and (18) are valid for closed porous spaces, which in gen-
Effective Thermal Conductivity of Frost eral is not the case with frost layers. Thus, a different beha-

vior of the convective flux is possible., This should be studied
by special experiments in the future.|]

T Classical model

Institut fir Technische Thermodynamik

und Thermische Verfahrenstechnik for the ef GCthe

CONDUCTION

Molecular conduction in the ice matrix and in the pore space is

Universitat Stuttgart o e by far the most important effect on the total heat flux.
Pfatfenwaldring 9 ConduCtl 1ty Of The thermal conductivity of frost is not only a function of den-
7000 Stuttgart 8O, FRG f t 1987 sity and temperature but also of its internal structure.
ABSTRACT ros G 0-o) l‘
If a temperature gradient exists in a frost layer energy is . .
transferred from the warm to the cold side by molecular conduc- % ice
tion, by water vapcr diffusion, by radiation and occasionally by SR '
natural convection of the pore gas. A theoretical and experimen-| —_, air, |
tal study has been carried out on the influence of these differ-! ..:.Hmt flux G A R Ry WU'tET
ent transport mechanisms on the total energy flux in frost. This! Aa e Rl 7
total energy flux can be represented by an effective thermal con- SR . N _ vapor
ductivity. iAo .
g
X, frost surface . eat flux g,
(o FIGURE 9. Frost structure model .
X X EFFECTIVE THERMAL CONDUCTIVITY \

Fromithe foregoing considerations it follows that conduction and!
_diffusion are the relevant effects on heat transfer in frost. The
‘effective thermal coﬁductiVLty is thus given by

\ degg = ACAd +Ap 21|
cold wall | .
__'l' p with the thermal conductivity hp due to diffusion according to
Py eq. (10} (see Fig., 2) and the conduction thermal conductivity
FIGURE 1. Heat and mass fluxes in a frost layer MACd from eq. (21) conmsidering egs. (14), (19}, (20}, (23), (24)

and (25).]
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Heat conduction characteristics of a
carbon-fibre-reinforced lithia—alumino-silicate
glass—-ceramic

D. P. H. HASSELMAN®, L. F. JOHNSON", R. SYED*, MARK P. TAYLOR?,
K. CHYUNG?

*Department of Materials Engineering, Virginia Polytechnic Institute and State University.
Blacksburg, Virginia 24061, USA :
*Corning Glass Works, Corning, New York 14830, USA

A study was conducted of the thermal diffusivity, specific heat and thermal conductivity of a
uniaxially carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. The thermal diffusivity

and conductivity paraliel to the fibre direction was found to be independent of thermal history |

and more than an order of magnitude higher than in the transverse directions. During the first
thermal cycle, the thermal diffusivity transverse to the fibre direction was found to exhibit a
decrease attributed to crack formation under the influence of internal stresses. The transverse
thermal diffusivity on thermal cycling to 1000° C exhibited lower values during heating than
during subsequent cooling. This hysteresis was attributed to a thermal history-dependent
parrier to heat flow at the matrixfibre interface. The thermal conductivity of the fibres along
their length inferred from composite theory was found to be much lower than the correspond-
ing value for pyrolytic graphite, attributed to less than complete graphitization and associated
high density of lattice defects which act as phonon scatterers.
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Figure 2 Photomicrographs of carbon fibre-reinforced

lithia-aluminc-silicate glass-ceramic at two different magnifications.,

Figure { Orientation of carbon-fibre reinforced iithium-alumina- SChemath and mlcrograph Of U.Ill&Xlal
carbon-fiber composite, 1987.

silicate glass-ceramic.
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Thermal Diffusivities of Composites with
Various Types of Filler

v
HIROSHI HATTA* e
Materials and Elecironic Devices Laboratory
Mitsubishi Electric Corporation

. I-1-57 Miyashimo, Sagamihara
Experimental ™ g, 2o 29, jopan \

and analytical  mworu Tavax

. Department of Mechanical Engineering
(eqU.lvalent University of Washington ‘

Seattle, WA 98195

inclusion

E A. KULACKI AND J. E. HARDER
College of Engineering
Colorado State University
Fort Collins, CO 80523

{Received June 1, 1990)
(Revised April 23, 1991)

method)
work, 1992.

ABSTRACT: In-plane and out-of-plane thermal diffusivities (conductivities) of Kerimid
resin composites reinforced with various types of filler were studied both experimentally
and theoretically. The types of filler used are SiO, particle, Al,O, short fiber, Boron
Nitride (BN) flake, and Si;N, whisker. The prediction based on our previous model
(Eshelby’s equivalent inclusion method) agreed reasonably well with the experiment,
except for BN flake composite. It was found that the orientation of filler has a strong effect

on the overall thermal conductivity of a composite.

Among these thermal properties,
thermal diffusivity (or conductivity) has been studied analytically by a number of |
researchers, for example, References {6-10}. These analytical models are, how-
ever, aimed at simple geometries of filler microstructure, such as unidirectionally |
oriented continuous ftber and spherical particle composites. Thus, in this paper, !
the thermal diffusivity of composites with more complicated types of filler
geometry is studied both experimentally and analytically.

\

THEORETICAL ANALYSIS

Measured values of thermal diffusivity are compared with predicted values
based on our model for thermal conductivity, k., of a misoriented short fiber

composite [3,4].

%.The orientation distribution of the filler can be easily estimated by cons1dermg
that all the composite samples were formed by compression molding. That is to
" say; short fiber and whisker composites can be considered to be nearly two-
-;‘dlmensmnal (2D random) and flake composites, unidirectional. The thermal con-
- ductivity of a composite reinforced with fillers of given orientation type can be

| predicted by our model based on Eshelby’s equivalent inclusion model [3,4]. In

- this model,-actual fillers with thermal conductivity k; in a composite are replaced
“. by equivalent inclusions which possess the same thermal conductivity as the sur-
_rounding matrix, k.., and eigen-temperature gradient. Thus, the model is similar
to that dev"lopcd orlgmally for clastlcuy problems [17,18]. The present study in-

1 Sphencal partlcle remforced compesite (Si0, particle/Kerimid)
eIn-plane random short fiber reinforced composite (BN flake/Kerimid)

2D:random short fiber reinforced composntc (ALO; short fiber/Kerimid,

Sl,N4 whisker/Kerimid)

Nehrly three-dimensional (3D random) short ﬁber remforced composite

g (Sl;,N4 whiskerlKennud) E A I o

EXPERIMENTAL APPARATUS AND PROCEDURE

Sample Selection and Preparation

Four kinds of fillers und heat resistant polymers (Table 1) which exhibit rela-
tively high thermal conductivity, were chosen for the reinforcement and matrix,

respectively. . . .
| In the selection process, special attention was placed:

upon covering a wide range of filler peometry, i.e., from flake to short fiber. Thcj
raw materials were processed into composite materials by two kinds of compres-|
sion_molding methods, the premix method and the paper making method,

Jt should be noted in the figure that, except for
BN/Kerimide composite [Figure 8(c)], the predicted values of A, and A, agree
recasonably well with the experimental values when the volume fraction of the
filler ¥, 1s small, but overestimate the experimental vaiues as ¥, becomes large.
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radiation and conduction, 2000.

Conduction and Radiation Heat Transfer in High-Porosity
Fiber Thermal Insulation

Siu-Chun Lee and George R. Cunnington
Applied Sciences Laboratory, Inc., Hacienda Heights, California 91745

Radiation is the primary mode of heat transfer in high-porosity
fiber thermal insulations even at temperatures above a few hundred
Kelvin. Consequently, many studies have reported on the modeling
of radiation heat transfer through high-porosity fibrous medta,

Heat transfer by combined radiation and conduction in fibrous
media has been addressed by many investigators using a simple
additive model in terms of the thermal conductivities for radiation
and conduction;the latter includes conductionthrough the solid lat-
tice of the fiber medium and any gas presentin the insulation,

The present theoretical raiationmodel includes formulations for
radiative properties and thermal conductivity of fibrous media,

Conduction Heat Transfer ‘

Although the dominant mode of heat transfer through high-
porosity fiber thermal insulations is generally radiation, the con-
tributions of conduction through the solid phase, i.e., fibers, and
any gas present in the void space between the fibers must be ac-

counted for when comparing theoretical predictions with measured
heat-transferdata. |

R T 4 o W I 3";\:.._-,¢. Lo

In the limit of large optical thickness, Eq. (35) reduces to
k., =k, +k, (39)

indicatingthat heat transfer by radiationand conducticnare additive

PERAR 15KU .- S0

‘ Fig, 3 SEM of bonded fibers; magnification = 1200X.

for optically thick media.
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me%tsqrements of Determination of Spectral Radiative Properties
radiative (and of Open Cell Foam: Model Validation

conductive)
. D. Baillis,* M. Raynaud,’ and J. F. Sacadura?
pI'OpeI'tIGS . 2000 5 Centre National de la Recherche Scientifique, 69621 Villeurbanne Cedcx, France

Spectral radiative propertics {absorption coefficient, scattering coefficient, and phase function) of open cell
carbon foam are determined experimentally. The identification method uses spectral transmittance and reflectance
measurements and a prediction model based on a combination of geometric optics laws and of diffraction theory.
In the wavelength region of 0.1-2.1 ym, directional-hemispherical transmittance and reflectance measurements
are used, whereas directional-directional transmittance and reflectance measurements are used in the wavelength
region of 2-15 ym. Thus, radiative properties are determined in the wavelength region from visible to infrared. The
two approaches corresponding to the two different types of measurement (directional-directional and directional-
hemispherical) are compared for the determination of radiative properties. Moreover, experiments performed on
a guarded hot-plate-type device are used to confirm that the proposed medel is appropriate to predict the radiative
heat transfer in such media,

Open cell carbon foam can be used as efficient thermal insuja- '
tion for high-temperature applications. Insulating foam consists of |
a highly porous solid material. Open cell foam insulations are semi- !
transparent media (absorbing, emitting, and scattering radiation).

To model heattransfer in such media, it is necessary to determine |

radiativeand conductive properties.|

The total conductivity includes the three independeat mecha-
nisms: conduction through the gas, conduction through the solid
material forming the celi, and thermal radiation™~'?:

k, = kg kg + £, (7)
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Effective Thermal Conductivity of Saturated

Sintered Nicke! Loop Heat Pipe Wicks

by

M. Bonnefoy and J. M. Ochterbeck’
Mechanical Engineering Department
Ciemson University
Clemson, SC 29634-0921

B. L. Drolen
Boeing Satellite Systems
Los Angeles, CA

M. N. Nikitkin
Swales Aerospace
Beltsville, MD

Abstract

in this investigation, the effective thermal conductivity of
sintered metal wicks was studied both experimentally
and analytically. The experimental study consisted of
measuring the effective conductivity of eleven samples
in vacuum and with three different saturating fiuids (air,
water and methanol). The analytical study aimed to find
a model to better predict the effective conductivity. The
wicks tested were typical of loop heat pipas for
spacecraft thermal control systems, The data obtained

using the different fluids allows the effective thermal
conductivity to be predicted as a function of other
saturating fluids. The measured values for effective
thermal conductivity were compared with other typically
measured parameters for loop heat pipe wicks,
including the porosity, permeability, pore radius, and
compression load,

Hydroaccumulator -~ Evaporator

Vapor grooves ™ ) Wick

e
Ligud core””

Liquid Hne™”

- =

Vapor line

1 T
condensation l i
0l

"

Condenser -

™~ subcooling

Figure 1: Basic Loop Heat Pipe [2],

Models of Effective Thermal Conductivity

Direction of Heat Tr:mifcr Direction of Heat Tranifcr

T

}:b‘
h 4

Effective Thermal Conductivity of Liquid Saturated
Sintered Ftber Metal Wicks

The error
on the measurement of the thermal resistarice of the
wick was less than 9.1% as shown by calculations.

Overall Results

Comparison was made between the mentioned basic |
models for the effective conductivity and the
experimental results. Most models were unable to
accurately predict the effective conductivity, both in dry
and saturated states.|

One item to note 18 that the‘
correlations typically only use the sample porosit_y to
vary the effective conductivity. This results in significant
lost information regarding the sample structure. }

| Experimental
measurements of

t

a)

b)
Figure 2 a) liquid and solid in series, b) liquid and solid '

in paralie! {4]

Y«J

A AP P A AN A A

X

b)
Figure 3 : a} unit cell, b) a quarter of the unit cell, c)‘
heat resistance schematic [7]

etfective conductivity of
heat pipe wicks, 2004.

Conclusions and Recommendations .

In future work, additional measuremenits of the effective
conductivity with variations in the metai material and an
alternate to water would be beneficial. As for
development of a correlation, information regarding the
structure of the samples is seen as vital.  This
information consists of the particle size distribution and
general particle geometry (it is assumed the particles
are not really spherical based on the current results of
the measurements).
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Microstructiral Modeling 2nd ‘Thermal P
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Simulation’of ‘Unidirectional' Composits

Keiko Kikuchi', Yan-Sheng Kang!, Akira Kawasald!

2ALMT, Corp., Toyama 931-8543, Japan

Sy 8

rope

DIB: 2-D

ty computational

technique, 2004.
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, Shinya Nishida? and ‘Akira Ichida?
\ Department of Materials Processing, Graduate School Q)"‘_Eﬁgi};éeriné;-‘TéﬁO@ ‘,Univé;}sz‘}y, Séri&azf "980-"8379', _Jdéaﬁ SR

The electrical, thermal and mechanical properties of functionally graded materials vary with microstructure and composition.
Consequently it is very important to know quantitatively the properties of composites for the design of functionally graded materials, However,

few methods of quantitative and theoretical evaluation for material properties on wide compositional range have been established, In this

research, a method that estimates the material properties of composites directly from their microstructure assisted with finite element analysis
was investigated. As an example of the estimation of material properties, the thermal conductivity of Mo fiber-Cu matrix composites has been
evaluated. Calculated results of thermal conductivity are well in agreement with the experimental data measured by using a laser flash apparatus

and the smallest deviation is 1.9%. The finite element anal

composite properties.

Digital Image Based (DIB),
geometric modeling technique'®™'? was used to reflect the
actual morphology of composite microstructure such as
inclusion shape, volume fractions, etc. on Finite Element
(FE) model. The DIB technique for 2-dimensional models'
can be divided into three parts.|
This DIB technique has a great advantage of excluding any
meshing manipulation such as defining coordinates and:
element connectiVities®because all the elements:have the

same size. . wi e ; L

Fabrication and evaluation of Mo fiber-Cu matrix!

ysis using a metallographic model is a very accurate method for estimation of

Thermal Conductivities of the Ideal Model for'
Unidirectional Composite

Modeling of ideal microstructure

The model of unidirectional circular cylinders packed in
square arrays is shown'as an ideal unidirectional composite in |
Fig. 3. From this ideal model, it is assumed that (a) the
composites are macroscopically homogeneous, (b) locally,
both the matrix and the fiber are homogeneous and isotropic,
(c) the thermal contact resistance between the fiber and
matrix is negligible, (d) the problem is two-dimensional, and
(e) the fibers are arranged in a square periodic array, i.e. they
are uniformly distributed in the matrix. The model shown in
Fig. 3(a) is a unit cell which represents one-cycle of the
periodic structure, so the transverse thermal conductivity of
unidirectional composite of circular cylinders was estimated
by using this unit ceil. The unit cell was divided into 4-node
fixed size square elements as shown in Fig. 3(b), so that the

FE model obtained from the unit cell became eguivalent to

that obtained from the microstructure of composites,

Comparison i

" The fibrous and fransverse thermal conductivities of the|
specimens were plotted respectively in Fig. 11, where the'
volume fraction of molybdenum was determined to be 88%
from the density measured by Archimedes's method. The

- cylinders packed in square arrays. (a) a unit cell. (b) the schematic

. \ b experimental thermal conductivity along the fiber direction
composite (a) (b) . o )
: : . were orepared was compared with the pararell model in Fig, 11(a), while for
Mo fiber-Cu matrix composite specimens were preparc R i C
from Mo fibers with a diameter of 120 pm and Cu plales.| . the transverse direction it was compared with the Perrins s
rom = : raodel in Fig. 11(b). The pararell model is a linear rule of
w4 { ok £ 7 X: » | ] mixtures, while the Perrins’s model is a predictive model for
VoS ‘ ‘ 4, | | the transverse circular cylinders packed in hexagonal arrays.
' ’.. ' [ | Each experimental result is well in agreement with the
9900y predicted one, so there is no thermal barrier at the interfaces,
A ¥Fpd A P . . e -
A ’ which is also obvious from the SEM micrographs.
? ' Fig. 3 The schematic illustration of the unidirectional mode! for circular

i, illustration of FE model based on unit cell (a).
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Multiscale modelling of thermal conductivity in composite
materials for cryogenic structures
A, Alzina *"*, E. Toussaint °, A. Béakou ", B. Skoczen ®

Intemational Journal of Solids and Sinuciures

Multiscale modeling of thermoelastic behavior

Same multiscale modeling of braided tabric composites for cryvogenic

approach for thermal and S e
mechanical properties of
composites for cryogenic

applications, 2006 i Loboratoine de Mécanique et Ingénierfes, Campue de Clermond-Ferrand [/ Lez
Céreguz, 65170 Aulbtere [ Frones |

AL Alzina*!, E. Toussaint *, A. Béakon®

Abstract

A multiscale analysis & performead to estimats the chermomechanical bshavior of

A column-type support post wsed in particle accalarators to sustain crycmagnets,



INTRODUCTION (ii

® Objectives

Development and application of a multiscale theoretical-
computational approach to calculate the effective conductivity
of composite materials with 2-D or 3-D microstructures, and
with or without the presence of voids, and of an interfacial
thermal resistance between the constituent phases.

® Motivation

Engineering applications of composite materials in various
industries (electronic equipment, acrospatial, nuclear etc.).

Relatively easy to fabricate.
Low cost and low weight.

Desirable/tailorable mechanical, thermal, and electrical
properties (stlffness resistance to corrosion and wear,
thermal expansion coefficient, electrical and thermal
conductivity, dielectric constant).

V V V




INTRODUCTION (ii1

® Problem of interest

Steady state heat conduction in composite materials.
® Definition of composite materials

» Fabricated heterogeneous media with two or more phases
that possess distinct macroscopic properties.

» Continuous phase: matrix (constituted by metallic, organic,
Oor ceramic materials).

» Dispersed phase: particles and/or fibers (silicon carbide,
aluminum oxide, carbon, graphite), voids.

® ‘Classification’ of composite materials

» Particulate (particles, [approx.] spherical, ellipsoidal etc.).
» Fibrous (e.g., fibers with axisymmetric geometry).
» Hybrid (mixture of particles and fibers).



Carbon Fiber Composites

Deborah D. L. Chung‘I
Butterworth-Heinemann © 1aa4

Boston London Oxford Singapore Sydney Toronio Wellington

Composite materials refer to materials containing more than one phase
such that the different phases are artificially blended together.,

A composite materia! typically consists of one or more fillers in a certain
matrix. A carbon fiber composite refers to a composite in which at least one of
the fllers is carbon fibers, either short or continuous, unidirectional or
multidirectional, woven or nonwoven. The matrix 1s usually a polymer, a
metal, a carbon, a ceramic, or a combination of different materials. |

Polymer-matrix composites are much easier to fabricate than metal-
matrix, carbon-matrix, and ceramic-matrix composites, whether the polymer is
a thermoset or a thermoplast.’

Carbon fiber metal-matrix composites are gaining importance because the’
carbon fibers serve to reduce the coefficient of thermal expansion (Figure 7.1
[1]), increase the strength and modulus, and decrease the density. If a
relatively graphitic kind of carbon fiber is used, the thermal conductivity can be
enhanced also (Figure 7.2 [2]),

Carbon fibers used for metal-matrix composites are mostly in the form of
continuous fibers, but short fibers are also used.|

Carbon is the matrix that is most compatible to carbon fibers.,

In addition to having attractive mechanical prop-'
erties, carbon-carbon composites are more thermally conductive than carbon,
fiber polymer-matrix composi‘es.

Carbon—carbon composites with high thermal conductivity are important

for_first wall components for nuclear fusion reactors, hypersonic aircraft,
missiles and spacecraft, thermal radiator panels, and electronic heat siuks.

Carbon fibers are electrically and thermally conductive, in contrast to the
nonconducting nature of polymer and ceramic matrices. Therefore, carbon |
fibers can serve not only as a reinforcement, but also as an additive for
enhancing the electrical or thermal conductivity. Furthermore, carbon fibers
have nearly zero coefficient of thermal expansion, so they can also serve as an
additive for lowering the thermal expansion. The combination of high thermal
conductivity and low thermal expansion makes carbon fiber composites useful
for heat sinks in electronics and for space structures that require dimensional
stability. As the thermal conductivity of carbon fibers increases with the degree
of graphitization, applications requiring a high thermal conductivity should use
the graphitic fibers. such as the high-modulus pitch-based fibers and the vapor
grown carbon fibers. Carbon fibers are morc cathodic than practically any
metal, so in a metal matrix, a galvanic couple is formed with the metal as the
anode. This causes corrosion of the metal. The corrosion product tends to be
unstable in moisture and causes pitting, which aggravates corrosion. To
alleviate this problem, carbon fiber metal-matrix composites are often coated.

Thermal Conductivity

The thermal
conductivities of P-100, P-120, and K1100X fibers are all higher than that of
copper, while the thermal expansion cocfficients and densitics are much lower
than those of copper. Thus, the specific thermal conductivity is exceptionally
high for these carbon fibers.|

In contrast, vapor:
grown carbon fibers have a thermal conductivity of 1 900 W/m/K at 25°C [76].
Hence, carbon—-carbon composites using vapor grown carbon fibers may have a
thermal conductivity exceeding 1000 W/m/K [77]. The low density of carbon
makes the specific thermai conductivity of carbon—carbon composites outstand-
ingly high compared to other materials. The use of porous carbon—carbon
composites with even lower densities [78] may further increase the specific
thermal conductivity.

InTEAFACE
Therefore, an optimum degree of fiber-matrix bonding is needed for

brittle-matrix composites, whereas a high degree of fiber-matrix_bonding is |

preferred for ductile-matrix composites.

Book on carbon fiber composites:
thermal applications and issues, 1994.

The mechanisms of fiber-matrix bonding include chemical bonding, van

der Waals bonding, and mechanical interlocking.|




INTRODUCTION (iv)

® Effective thermal conductivity (second order tensor)

“Ratio” between volumetric mean of heat flux to volumetric

mean of temperature gradient for a representative volume
element (Milton, 2002):

<q>=K.g < VI >

1 [ I O R
< 2= 1[_ /I qx) dV = I_ (/I Am(x) dV + /I q4(x) Eﬂ'.j

-
&

PRiA E% / VT(x) dV = Il ( / VTn(x) dV + / VIy(x) dV )

(m — matrix; d — dispersed phase)



INTRODUCTION (v)

Microstructure

Geometrical arrangement of the composite phases; charac-
terized by the volume fraction and by the spatial, size,
orientation, and shape distributions of the dispersed phase(s)
inside the matrix; the microstructure may or may not be
statistically homogeneous (= dispersed phase volume
fraction independent of position).

Classification for modeling purposes
» With respect to spatial distribution of the phases:
v' Ordered (distribution function is ‘trivial’);
v’ Random (distribution function 1s ‘non-trivial’).
» With respect to periodicity:

v'Periodic (representative volume element, or cell,
repeats itself along the spatial directions);

v' Non-periodic.




INTRODUCTION (vi)

® Illustration of 2-D microstructures
(dispersed phase: cylinders of ‘infinite’ length)

one-particle cell

multi-particle cells
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INTRODUCTION (vii)

® Tllustration of 3-D microstructures

(dispersed phase: spheres)

one-parti

cells

ulti-particle

cell



RNAL OF MATERIALS SCIENCE 11 (1976) 2105—2141.

Classical review, 1976.
The physical properties of composite
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The coefficient of thermal conductivity A Problems of heat transfer are of considerable :

defined by Fourier’s law which for an isotropiy
medium may be written in the form )

J = —XAgrad T (3)

where A, the thermal conductivity, is the P;o?
portionality constant between the heat f]u,;
vector J and the temperature gradient. Othe,
transport coefficients are defined in a simily
way as proportionaiity constants between fluyes
and gradients. Examples are the electrical condye.|
tivity (Ohm’s law) and diffusion coefficients
(Fick’s law). )

With a composite material, the relations deriveg
for all these properties will be formally identical
and the expressions obtained for the dielectic
constant, for example, will be equally applicable
to the thermal conductivity or magnetic
permeability.

A large number of empirical or semi-!
empirical expressions for the thermal conductivity
of heterogeneous systems have also been
examined. As with the dielectric constant it will,
however, only be possible to obtain a satisfactory
description of the thermal conductivity behaviour
by taking the geometry of the composite into
consideration and making proper use of the geo-!
metrical information that is available, |

technological importance in situations where heat
transfer has to be encouraged, as in heat ex-,
changers, or reduced by the use of insulation. Most
insulating materials are, indeed, essentially mix-
tures of a solid material and air and owe their
insulating properties to the low thermal conduc- |

tvity of air| insulating material can have a|
fibrous or granular structure (e.g. glass wool or
diatomaceous earth) in which case the air is the

continuous phase or it can be cellular (e.g. a poly-
urethane foam). In the latter case, if the pores are‘
open there will be two continuous phases; if they

are closed there will be one continuous solid

phase. |

For a foamed or porous material, the thermal
conductivity A is often expressed as

A=dF At A+ A (40)

where A, Ag, A; and A are contributions due to
conduction through the solid, conduction through
the gas, radiation and convection within the pores.
This description is, however, misleading since it
implies that the four processes are taking place
independently and in parallel. At normal tempera-
tures, however, radiation effects will be small and,
if the cell diameter is less than 3 to 4 mm, con-
vection effects will be negligible [43].

c d

Figure 1 Composite geometries: (a) random dispersion of
spheres in a continuous matrix, (b) regular array of
aligned filaments, (c) continuous laminae, (d) irregulari
geometry.

Figure 9 Scanning electron micrograph (X 100) showing
marginal gap produced by difference in thermal expansion
coefficients of dental filling material and tooth substance
(courtesy Dr W. Finger). :
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Determination of the thermal conductivity and
diffusivity of thin fibres by the
composite method

J.J.BRENNAN
United Technologies Research Center, East-Hartford, CT 06108, Uﬁ
theory,

L.D. BENTSEN, D, P, H. HASSELMAN
Department of Materials Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, USA

It is suggested that the thermal conductivity of very fine fibres can be evaluated indirectly
with the aid of composite theory using the experimental data for the heat transport
properties of an appropriate composite which contains the fibres. The feasibility of this
approach was investigated by determining the thermal conductivity and diffusivity of |
fibres of amorphous silicon carbide from 25° C to 1000° C contained within a lithium
aluminosilicate glass-ceramic using the laser-flash technique for measurement of the
thermal diffusivity of the composite. Due to the amorphous nature of the fibres, values
for their thermal conductivity and diffusivity were found to be far less than the corre-
sponding data for crystalline silicon carbide. The positive temperature dependence of the
thermal conductivity, coupled with the independent observation of an increase in thermal
conductivity with specimen thickness, suggests that radiative heat transfer makes a signifi- |
cant contribution to the total heat transferred, A number of advantages and limitations of |
the composite method for the evaluation of thermal transport properties of fibres are
discussed,

optical micrograph

Figure 1 Optical micrograph of
0/90° composite of lithium alu-
minosilicate glass-ceramic with '
45 vol% amorphous silicon car-
bide fibres.

Determination of properties
of fibers using ‘composite

" 1982.

2.3. Evaluation of the thermal

conductivity and diffusivity of

the fibres from composite theory
For heat-flow parallel to uniaxially aligned fibres,
the thermal conductivity, K, of a composite is

K. = K Vo + K,V (D

[

where K is the thermal conductivity, ¥ is the
volume-fraction and the subscripts ¢, m and p, refer
to the composite, matrix and fibres, respectively. }

For heat-flow perpendicular to the fibre direc-
tion, the thermal conductivity, as derived by
Bruggeman (7], can be written |

Ko —K, K.— K

ey =2 P V..

“ﬁ+m)m (m+xJp (ﬂ
From the measured value of the thermal

diffusivity, the corresponding value of the thermal
conductivity, K, can be calcuiated from ‘

K = «kpe, (3).

where « is the thermal diffusivity, g is density and
¢ is the specific heat. The specific heat of the com-
posite can be calculated from the measured values
for the specific heat of the fibres and the matrix|
by means of the rule of mixtures. Substitution of
the values for the thermal conductivity of the
matrix and the composite into Equation | or 2
permits calculations of the thermal conductivity of
the fibres. The thermal diffusivity may then be
determined using Equation 3.

7. D.A.G. BRUGGEMAN, Annal. Physik 24 (19351}
636. b



INTRODUCTION (viil

® Interfacial thermal resistance

» Origin: fabrication process.

» Causes: poor mechanical and/or chemical adherence;
presence of impurities and roughness; difference between
the thermal expansion coefficients of the phases; cracks.

» Effect: jump of the temperature field at the interface
between the phases (barrier to heat conduction).

» Definition/model: ratio between the temperature jump to
the heat flux at the interface:

T 1 — T' = - 9 ——
PI — M |interface d | mterface m? - Kfﬁﬁi : hﬁ W,
d|interface RI
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Role of Interfacial Debonding and Matrix Cracking in the
Eftective Thermal Diffusivity of Alumina-Fiber-Reinforced
Chemiqal-Vapor-Iniilirated Silicon Carbide Matrix Composites

D.P.H. Hasselman* and A. Venkateswaran*
Department of Materials Engineering, Virginia Polytechnic Institute and State University,

Eviderice of intertacial'debonding = #7e6=%= Vs £
and matrix cracking, 1991.

L]

H. TOWiJ‘

It is suggested that the matrix cracking and interfacial |
debonding shown in Fig. 9 are related to the differences in |
the coefficient of thermal expansion which for the alumina |
exceeds the corresponding value for the silicon carbide. |

The resulting preferred crack
orientation will primarily affect the thermal diffusivity trans-
verse to the fiber plane. |

This mechanism is offered as an explanation for the lower
value for the thermal diffusivity in vacuum than in nitrogen
or helium, as shown in Fig. 8. Furtherinore, it also presents
proof that interfacial and matrix cracks can act as insuiators,
especially Tndcr vacuum. IMQITCCt SUPPOIT 10T The above cx-
planations is provided by the data of Eckel and Bradt,” who
observed a hysteresis in the thermal expansion behavior of
composites similar to those of the present study, which was

Societe Europeenne de Propulsion, Les Cing Chemins-Le Haillan, F 33165 Saint Medard en Jolles‘

The thermal diffusivity of a biaxial weave alumina-fiber-
reinforced chemical-vapor-deposited (CVD) SiC composite
heated to 1500°C, which is above the manufacturing tempera-
ture, was found to exhibit an increase for heat flow parallel
to the fiber plane, whereas a decrease was observed perpen-
dicular to the fiber plane. The increase parallel to the fiber
plane was thought to be due to the annealing of the fibers
and matrix. The decrease perpendicular to the fiber plane
was found to be the result of interfacial debonding and
matrix cracking within the plane of the fibers. [Key words:

composites, fiber reinforcement, chemical vapor deposition.
thermal diffusivity, cracking.]

I. Introduction

CERAMIC matrix composites offer considerable advan-
tage over monolithic single-phase ceramics for high-
temperature applications, in view of their enhanced fracture
toughness, noncatastrophic failure mode, and increased
thermal shock resistance. From the perspective of thermal

insulation, temperature control, and energy conservation,

information on the variables which control the effective ther-

mal conductivity of ceramic matrix composites is critical for

purposes of design, materials selection, and performance pre-

diction of high-temperature structures and components.

II. Experimental Procedure and Results

Figure 1 shows a SEM micrograph of a polished cross sec-
tion perpendicular to the fiber direction prior to thermal
property measurement. The fiber volume fraction was ap-

proximately 42%. The presence of a few pores within the SiC
matrix indicates that the infiltration process was nearly fully
complete. |

also attributed to interfacial debonding due to the thermal
expansion mismatch.

Cedex, France

Comparison of the data of Figs. 7 and 8 suggests that |
heating to 1500°C has introduced a structural change of a |
tvpe such that the ambient gaseous atmosphere affects only |
heat flow transverse to the fiber direction.| o

This micrograph clearly indicates the
existence of crack formation coupled with interfacial separa-
tion within the plane of the fibers. Because cracks do not
affect heat conduction parallel to the fiber plane,” only the
effective thermal conductivity transverse to the plane of the
cracks, i.e., transverse to the fiber plane, is expectad to be
affected, in agreement with the data shown in Figs. 7 and 8.
SEM fractographs of samples heated to 1500°C were similar
to the one shown in Fig. 2, again showing thaf crack propaga-
tion occurred preferentially along the fiber-matrix interface.

The interfacial spacing and the matrix crack opening dis-
placement is such that the gaseous heat transfer is in the so-|
Y called “molecular regime,” in which the mean free path

il between collisions of the gaseous species with one another is|

much larger than the gap or crack width.|

“

As a final general remark, the results of this reinforce the
{ findings of earlier studies™" that the measurement of the
heat conduction behavior of solids in different gaseous envi-
§ ronments can be used as a test for microstructural damage by
@ nondestructive means.

Fig. 9. SEM micrograph of polished section of alumina-fiber-|
reinforced CVD SiC matrix composite heated to 1500°C in nitrogen,
showing evidence of interfacial debonding and matrix cracking.
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Effective Thermal Conductivity and Thermal Contact
Conductance of Graphite Fiber Composites

S. R. Mirmira,* M. C. Jackson,' and L. S. Fletcher*
Texas A&M University, College Station, Texas 77843-3123

The transverse and longitudinal effective thermal conductivity and contact conductance of discontinuous and
misoriented graphite fiber-reinforced composites has been studied over a range of temperatures (20-200°C) and
pressures (172-1720kPa). Three different fiber types (DKE X, DKA X, and K22XX) and three fiber volume fractions
(55,65, and 75 %) in a cyanate ester matrix were studied, The addition of fibers to the matrix resulted in a: increase
in effective thermal conductivity, but appearsto level off at fiber volumefractions of 65%. Furthermoce, the effective
thermal conductivity in the longitudinal direction was significantly greater than in the transverse direction and
was more dependent on temperature. These data were used to develop an equation relating the thermal contact
conductance to the harmonic mean thermal conductivity of the fiber and matrix material, fiber volume fraction,
sample thickness, and microhardness.

Measurements of effective conductivity, acknowledging

presence of interfacial resistance and voids, 1999, 2001.
EFFECTIVE THERMAL CONDUCTIVITY OF FIBROUS COMPOSITES: |

EXPERIMENTAL AND ANALYTICAL STUDY \ Figure 4.12. K22 XX (V= 62%) fiber indicating fiber splinters

A Dissertation and a void between the fiber and matrix,

Figure 4.10. Magnified cross section of
\ K22 XX fiber exhibiting a definite texture.
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Submitted to the Office of Graduate Studies of
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Table 1 Theoretical models for effective thermal conductivity of graphite composites

Author Expression for effective thermal conductivity Comments
Rayleigh® ko fky = 2Vf/{[(l + kg k3 — k)] + WV, Circular filament in a square lattice
[ ki3 L0+ ks ke w ] 10.032357%? Transverse effective thermal conductivity
[( 7/ k) f/( 1/ km)® ]( SeEtia) ] Does not account for interfacial thermal
- resistance between fiber and matrix
(hkpfho + 1)+ Velkyefhy = 1)
Behrens® ky = [ kf km ] V’r kf/km ] Transverse effective thermal conductivity
(hpfhm + 1) = Vielky [k — 1) | Circular filament in a square lattice
Does not account for fiber onientation or
interfacial thermal resistance
Hashin’ Bounded solution for transverse effective

Cheng and Vachon'®

Batchelor and O Brien'!

Hashin'?

Nomura and Chou"?

Chamis'*

Hata and Taya'”

Canuso and Chamis'®

Mottram and Taylor!?

Hasselman and Johnson'®

oo (53
oonfon (5o %)

NN 7

k, = 4.0k, log, (kf /in)

ok kfvf+k,,,(l+Vm). bk kU k(14 V)

k(1 + Vi) + kpn ¥y ¢ "k (1 4+ VY + kg Vi

K = (Vokm + V)2 + ek (km + k¥

e + k1) T Wik + Vik )2 4 kky

ko Vs

1=/ Velh—knfky)

k v, \'/k u
L _ (]—-I—-L—)(I I) +~£

(2] /)t

x = 2 for spheres
= 1 for cylinders perpendicular to heat flow
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thermal conductivity
Arbitrary phase geometry

Parabolic, random distribution of fibers
Only accurate for Vy < 66.7

Random array of uniform spherical particles
Accounts for point contact among particles
Applicable fork,; /&y, > 1

Fibers isotropic along their length only
Lower bound equivalent to that of Behrens®
’

Transverse effective thermal conductivity

Fibers isotropic along their length only

Fiber has ellipsoidal symmetry

Simplified formula for an aligned long fiber
composite

Long, continuous, circular fibers in square
amay

Unidirectional fibers

Transverse effective thermal conductivity

Three-dimensional misoriented short fibers
Fibers are not in contact
Simplifies to Hashin's” lower bound

Transverse effective thermal conductivity
Unidirectional continuous fibers
Fibers arranged in a square cell

Accounts for shape of discontinuous phase.
Model does not account faor interface
resistance and spacing of the fibers.

Randomly dispersed spherical inclusions
with a coating

Dilute fiber volume fractions

No interaction between fiber and matrix

Based on this review, it appears that modeling the effective ther-
mal conductivityof fiber composites should account for the geomet-
rical arrangementof the fibers, the dimensionsof the fibers, the fiber
volume fraction, and thermal conductivity of the fiber and matrix.
The model should also account for the interfacial thermal resistance

between the fiber and he matrix and e pOSSlBlllty of transversely |

anisotropic fibers, ‘

Experimental Program
To provide additional experimental data on the effective ther-
mal conductivityand thermal contact conductanceof discontinuous
_graphite fiber composites, under controlled conditions, an experi-
mental program was undertaken. The following sections describe
the materials selected, the test facility, experimental procedure, and
the uncertainty associated with results,

To avoid convection losses, the entire test facility was housed
in a vacuum of 1 x 10~3 torr maintained by an oil diffusion pump
backed by a two-stage rotary pump. Further, radiative losses from
the fluxmeters and samples were_reduced by placing a segmented
radiation shield around the vertical test column.

Conclusions

hand, the transverse effective thermal conductivity of the compos-
ites was highest for fiber volume fractions of 65%, above which the
increasedinterfacial thermal resistance between the fiber and matrix
negated any benefit due to greater fiber volume. On the other hand,
the longitudinal effective thermal conductivity increased for higher
fiber volume fractions. The longitudinal thermal conductivity was
approximately one order of magnitude greater than the transverse.
Furthermore, the effective thermal conductivity of the composites
did not vary significantly over the selected temperature range.

Considering the importance of the interfacial thermal resistance
between the fiber and the matrix, it is recommended that a fun-
damental experiment be conducted (ideally with known number of
fibers)to quantify this value as a function of material properties. It is
also recommended that the effect of cryogenic temperatures on the
thermal conductivitybe examinedand a largerrange of fiber volume
fractions be tested. Further, it is apparent that the present models
do not accurately predict the thermal conductivity of graphite com-
posites, It would be beneficial to develop a model that accounts for
the various influencing parameters, including the interfacial thermal
resistance between the fibers and the matrix. Electron microscopy
studies would reveal the nature of bonding between the fibers and
the matrix, as well as the presence of voids.

Critique of previous
approaches, 1999, 2001.



Thermal interface barrier

An interfacial thermal barrier between matrix and fibre may
" arise because of poor mechanical contact, the presence of

impurities at the interface or debonded regions |

Unlike earlier work,'"'* where the thermal interfacial

barrier was implemented into FEM via an interphase of low
_ , Ao ane R conductivity, in the present work the thermal interfacial
The thermal conductivity of metal matrix composites is investigated by computational simnlations, in which the barrier is implemented as an interface within the unit cell
effect of a thermal barrier resistance between the corstituent phases is explicitly taken into account. A numerical approach. Specific thermal contact surface clements are
unit cell approach, which is based on the finite element method, an analytical mean field method of the Mori— £mployed at the constituent interfaces, Al
Tanaka type and bounding techniques are employed. To predict the effective conductivities of fibre composites two tomposite * with 2fixed -volume ..fraction, .skin constant,
different types of unit cell are utilised for the numerical studies. Two dimensional unit cells are developed which inclusicn shape and orientation, containing large inclusions
allow for investigations of aligned, continuous fibre reinforced composites while three dimensional unit cells are €xhibits*a higher,effective conductivity than would be the
employed to study a large variety of different arrangements of non-staggered and staggered aligned short fibres. In' case for smaller inclusions due to the fact that the ratio of
the case of short fibres the thrmal barrier resistances of the end faces and of the cylindrical surfaces are modelled| inclusion surface area (i.e. the interfacial area) to volume
independently, which allows one to study both their irdividual and their combined influences on the overall L ‘
behaviour. Results are presented for carbon fibre/copper composites and their overall thermal conductivities are
investigated in terms of interfacial thermal barriers and microtopologies. MST/5341.

|~ Numerous models have bc:n published for predicting !
the effective transport properties of heterogeneous media.
The majority of the analytical estimates have been based on

Numerical simulation of thermal conductivi

rical simulation:of:thermal conductivity:-of:
MMCs: effect of thermal' mté rfa ce reS| S“ti'i'n‘c‘e '

‘Mateérials Science and Technology  August 2003 Vol. 19|
i "'xé'.wh i

D. Duschlbauer, H. J. B6hm and H. E. Pettermann

A 5 1

Introduction Unit cell approach

Metal matrix composites (MMCs) are widely used in

electronic packaging apphications, because of the possibility
of tailoring the properties of the composite. The coefficient
of thermal expansion (CTE) and thermal conductivity are
the two most important design parameters.

the equivalent inclusion method dealing with inclusions of
ellipsoidal shape. In this basic form these models assume
ideal thermal contact between the constituents,” ~® and exten-
sions for modelling coated inclusiGhis have been reported.”
The implementation of non-ideal thermal interfaces where

The unit cell approach describes the macroscale and micro-
scale behavicur of inhomogeneous materials by studying
model materials ihat have idealised periodic microstruc-
tures.,

. Because of copper’s non-reactivity with carbon, a draw-  the temperature field 13 not continuous at constituent o) ey :.‘;;;'3'*32?#"# :“'::'e et |
back of carbon —copper composites is the poor matrix/fibre  faces”'® represents another group of extended models. y P00y v‘g%@ﬁﬁéaﬁﬁﬁeﬁﬁ
interface, which severely reduces the effective heat flow| , _ _ T ‘,__ﬁ*f%?ggn :..:‘»-.’n}gm'gn‘

ne through the interface.! The interfacial thermal barrier was A AaTAT O e.‘,,%‘gl!
passing through the nterface. S ! RS W‘ & UK
modelled as a layer of small (but finite) thickness and ?Iag?g ?}‘%‘ a‘%’
- - - - ~ vity. i.e. 1 i i QAR A

"Dut to different morphiologies of carbon fibres ond faces, -Loor conductivity, Lc. introducing 2 third phase, : Qz‘hsﬁgiﬂﬁ 7y &X

o . ) SRR N
and cylindrical surfaces (side faces) but also due to breaking In th t work, numerical unit ccll studies focus| : ;‘%‘;ﬁgggﬂ‘ X
of carbon fibres:(e.g. . during the hot pressing ‘process -of n the present work, num X Wz R ey

. , A e : .4 on aligned CFRCs and aligned, short fibre reinforced i qag;ﬁ.mé

precoated fibres, leaving: fibres with coated side faces and, ites (SFRCs). In the case of CERCs, resular fibre ’iﬂf-sfi%‘a%'é'é'é 5
non-coated -end faces), high risk.and low risk arcas of COmposiles ( $). in the ; » 165 V1 ROk

- - X . arrangements as well as random fibre arrangements are AR OAN
potential thermal interface degradation are created. Tt i1s an

aim of the present investigation to determine the effects of |
interface failure on the effective conducuvity.

2-D ANSYS simulation
accounting for interfacial
resistance, 2003.

investigated. SFRCs are studied with respect to thel
influence of axial fibre offset and the degree of stagger on
the effcctive conductivity. For both CFRCs and SFRCs the
influence of thermal barriers at the fibre/matrix interfaces
on the effective conductivity is investigated by means of
appropriate thermal interface clements. For the analytical
studies *a Mori—Tanaka type approach for coated inclu-
sions is used, which is applicable to the case of thermal
interfacial - resistances as well. |

=

1 Tweo dimensional unit cells for periodic arrangement)
{rectangular) of aligned centinuously reinforced

composites: fibre volume fraction (=04 [



UNIT CELLS FOR CONTINUOUSLY FIBRE
REINFORCED COMPOSITES

Clearly these regular.

‘real’ composites. |

arrange.aents do not fully represent

Improved models can be obtained with multifibre unit cells |

in which fibre positions are selected randomly or taken from |

micrographs.

In the present study a unit cell with

pseudorandom fibre positions is used, which is based on |

an arrangement used earlier”'|

lf some mlcrotopology shows a set of paralleI sxmmetrx
lanes, these planes have special properties.|

Symmetry BCs are very useful for describing simple,
regular microgeometries, but they are less suited to model‘
random arrangements. On the one hand a random|
arrangement suitable for symmetry BCs is only pseudoran-|
dom as the fibres may either not touch a face or must be
bisected by one or more faces, and on the other hand it is|
assumed that the heat fiux orthogonal to the applied
gradient is zero, which always automatically sets the
effective conductivity k¥, to zero (compare equation (8)).
Only for sufficiently iarge random unit cells with dlmost
isotropic effective conductivities can this effect be neglected.

UNIT CELLS FOR STAGGERED SHORT FIBRE
COMPOSITES |
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3 a different staggered and non-staggered arrangements
of aligned short fibres (aspect ratio=10) for axial fibre
offset «=0-25; b geometry parameters ¢ and «
describe degree of staggering and axial fibre offset
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issue of boundary conditions
EFFECTIVE CONDUCTIVITIES

For the numerical and analytical studies, conductivities
are chosen to be independent of the temperature. Never-
theless the studies can be readily extended to the case of|
temperature dependent conductivities by repeatedly run-
ning the calculations with the appropriate constituent
conductivities corresponding to a particular temperature.
With this procedure the temperature dependent thermal
composite behaviour is predicted for discrete temperatures
for small temperature differences within the unit cell.

It should be noted that only stationary fields are con-
sidered, i.e. initial temperature distributions, specific heat and
constituent densities do not influence the effective conduct-
ivities of the composite. Investigations of transient processes
seem feasible by means of appropriate FEM models, yielding

For the numerical and analytical studies, conductivities
are chosen to be independent of the temperature. Never-
theless the studies can be readily extended to the case of
temperature dependent conductivities by repeatedly run-
ning the calculations with the appropriate constituent
conductivities corresponding to a particular temperature.
With this procedure the temperature dependent thermal
composite behaviour is predicted for discrete temperatures
for small temperature differences within the unit cell.
~ It should be noted that only stationary fields arc con-
sidered. i.e. initial temperature distributions, specific heat and
constituent densities do not influence the effective conduct-
ivities of the composite. Investigations of transient processes
seem feasible by means of appropriate FEM models, yielding
time-dependent and local effective conductivities.

time-dependent and local effective conductivities. \

Results and discussion

As an example carbon/copper composites are chosen, which
are produced by hot pressing; matrix and fibre material data
are listed in Table 1. The conductivity of the isotropic
copper matrix is approximately 10% less than the
theoretical conductivity of 99% copper, due to contamina-
tion and pores left after the hot pressing process.

All calculations are carried out for carbon/copper com-
posites with a fibre volume fraction {=0-4. The fibres in
SFRCs are modelled as cylinders with an aspect ratio of 10.

Unit cell calculations are carried out with the finite
element program ANSYS 5-7.2* Two dimensional unit cells
are meshed with six node triangular elements, three
dimensional unit cells are meshed with 10 node tetrahedral
elements. [The thermal interface was modelled with appro-
priate contact/target surface elements. which are overlaid on
the com for non-conformal

meshes at the interface.|

Thermal barrier interface  The influence of the thermal
interface is studied for a square and a rectangular (h-/
ap=0-6) arrangement. The interface COﬁdlIL[dnCt_ |
(B Tgbres Fibre bemgthe fibre radius) is varied from 107" |
to 10 Wm ' K", covering the range from perfectly |
insulating interfaces to perfectly conducting interfaces. \

Failure of the end face interfaces

The influence of decohesion or lack of contact of the
interfaces at the fibres’ end faces, ie. perfectly insulating
interfaces, is also investigated. The effective axial con-
ductivities are reduced severely while the effective transverse
conductivity is less affected (Table 3, Fig. 6).[

The effective transverse conductiv-|
ity is reduced only slightly due to the presence of the thermal
barrier at the end faces (for all arrangements the reduction
is less than 0-1%). ‘

The setup of the microarrangements was highly idealised, |
as perfectly periodic arrangements are not fully realistic.
Nevertheless useful insight and information on the inter-
dependence of the topological input parameters was gained.

When compared to three dimensional unit cells with
randomly oriented fibres, the cells employed for aligned
fibres can be set up relativelv easily to meet high fibre
volume fractions requirements, and they are not very
demanding with regard to computational requirements. The
present approach can easnly be applied to other micro-
topologies. Extensions to fully coupled thermomechanical
investigations of high volume fraction, three dimensional
unit cells with randomly oriented fibres and with considera-
tion of load dependent progressive failure of the interfaces
are feasible.




INTRODUCTION (ix)

® Characteristics of composite materials
» Presence of large number of particles or fibers.
» Very disparate length scales:

vMACROSCALE: physical dimension of the composite
body (m —» cm);

v MesoScale: characteristic dimension of the composite
microstructure, RVE or cell (imm — um);

v'microscale: characteristic dimension of the
particles/fibers (um).

® Heat conduction in composites
» Transport problem in multiple scale media.

» Difficult direct application of conventional analytical and
numerical methods.

» Difficult determination of local temperature fields.

» Macroscopic thermal behavior of a composite may be
described, once the effective conductivity 1s known.




BRIEF LITERATURE REVIEW (1)

® Bound methods
(Milton, 2002; Torquato, 1991; Nomura & Chou, 1980)

» Rigorous determination of lower and upper bounds.
» General spatial correlation functions for the microstructure.

» Do not agree well with experimental data when phase
contrast (e.g., conductivity ratio) 1s high.

® Analytical and semi-analytical methods

(Cheng & Torquato, 1997; Furmanski, 1991; Sangani1 & Yao, 1988;
Sangani & Acrivos, 1983; Perrins et al., 1979)

» Simple geometries (e.g., spheres, ellipsoids).
» Dilute limit (low dispersed phase volume fractions).
» May treat random distributions of particles.



BRIEF LITERATURE REVIEW (ii

® Phenomenological approaches

(Dunn et al., 1993; Hasselman et al., 1993; Benveniste et al., 1990;
Hatta & Taya, 1986; Hashin, 1968)

» Simplifying heuristic assumptions: mean field concept of
Mori-Tanaka, equivalent inclusion method of Eshelby.

» Distributions of orientation and aspect ratio of fibers.
» Interactions of neighboring fibers are neglected.
» Most works assume perfect thermal contact.

» Expressions for the effective thermal conductivity “valid”
for low to moderate dispersed phase volume fractions.



BRIEF LITERATURE REVIEW (iii

® Computational approaches

(Matt & Cruz, 2006; Duschlbauer et al., 2003; Matt & Cruz, 2002; Matt
& Cruz, 2001; Rocha & Cruz, 2001; Ingber et al., 1994; Veyret et al.,
1993; James & Keen, 1985)

» Flexibility to incorporate geometrical and physical effects.
» Mostly restricted to 2-D microstructures.
» Microstructure must be prescribed.

» FEM, FDM, BEM.

» So far, not systematically applied to 2-D and 3-D
composites with realistic geometrical and physical
features.



BRIEF LITERATURE REVIEW (iv)

® Experimental measurements

(Jiajun & Xi1ao-Su, 2004; Garnier et al., 2002; Mirmira & Fletcher,
2001; Mirmira, 1999)

» The truth: complete physics, hard to fully characterize.

» Criticism: majority of existing methodologies overestimate
the effective thermal conductivity of composites.

» Estimation of interfacial thermal resistance.
» Estimation of volume fraction of pores inside the matrix.
» Information about shape and orientation of fibers.

» Still: difficult comparison with theoretical/numerical
predictions.



HEAT CONDUCTION IN COMPOSITES (i)

® Physical description

o0

kﬁ% Gk

composite with 3-D microstructure




HEAT CONDUCTION IN COMPOSITES (ii)

® Mathematical formulation, dimensional strong form

governing
equations

boundary
conditions
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HEAT CONDUCTION IN COMPOSITES (iii

® Mathematical formulation, non-dimensional strong form

5 [80m G A2 o *
— p— 211 - . X
Oy; \ Oy k™ AT y = 7
0" (x*) = T"(x)
G, ( 89d> g N2 . f‘(T)
—— | Rij = | = em {ly o Tix
33}1 ! 83,'3 km ﬁT E"d(x) = AT
i
o 0 ” e
— T — Rij =— Ty €Il g G
0y 0y; Gn = (nAT
G, = GaN*
o™ hg A  kmAT
- o= ™ - 6 o0,
i " k™ ( ) . Bi = f;{ﬂ:\
|, magnitude of interfacial

thermal resistance



HEAT CONDUCTION IN COMPOSITES (iv)

® Mathematical formulation, weak form

» Advantages of weak form

v’ Boundary condition of continuity of heat flux at the
interface 1s naturally imposed (= easy to incorporate
voids).

v Compatibility with the finite element method.

» Definition of function spaces
X(Q) = {we I (Qup,cn =, wn,c0 =w, wlon, =5 € R}

X’ (€)) allows jumps at the interface

X(Q) = X'(@)n Hy(Q) Hy () € H()



HEAT CONDUCTION IN COMPOSITES (v)

® Mathematical formulation, weak form

> Statement

given ii(y), Bi and G(y), find 6(y) € X’ (L)) such that

of Ou _
LQ:; (y) By om; dy + /am Bi[v]an, [0]sq, ds = /QUGdy Yo € X(Q)

o 07,8, Gy in Q€ O
UJQJQU(Y)?G:<
Ud:,@d,.-‘i’aij,Gd in {3 C £

\



HEAT CONDUCTION IN COMPOSITES (vi)

® Homogenization theory

(Milton, 2002; Auriault & Ene, 1994; Auriault, 1991; Bakhvalov &
Panasenko, 1989; Bensoussan et al., 1978; Babuska, 1975)

» Rigorous mathematical technique.

» Applied to a variety of transport phenomena 1n
heterogeneous media.

» Exact solution behavior in the limit that the ratio of length
scales tends to zero.

» Transforms the transport problem defined in the original
heterogeneous medium 1n two easier problems to solve:

vhomogenized problem:;
v'cell problem.



HEAT CONDUCTION IN COMPOSITES (vii

® Homogenization theory

Schematic 1llustration of the method

000’’’

. i dk
o= |l + %

PVC-3

representative cell of
microstructure (RVE)
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HEAT CONDUCTION IN COMPOSITES (viii)

® Homogenization theory
Technique of asymptotic expansions using multiple scales

» Appropriate for transport problems defined in statistically
homogeneous media that exhibit a natural separation of
length scales: e = A\/L <« 1.

» Solution 1s written as a function of two variables:
v'fast variable (mesoscale coordinate);
v'slow variable (macroscale coordinate).

Q(Xay) — QU(X.}y)—|—691(ij)—|—6292(3{,}7)—|—---
o(x,y) = wixy) feuxy) +éuEy) ...

y = x"/A x=x"/L=cy

(fast variable ) (slow variable )




HEAT CONDUCTION IN COMPOSITES (ix)

® Application of the method

» Substituting the expansions for 8 and v in the weak form...
oy By Bu v, v\ [ B 890 00 O 08,
[o (o )

+ € te te — 4 =
Ay O T O Y, 8% 8% 835"3 83{7

+ / Bi [’UO +ev + € Ug}aﬂs [90 + €6, + ¢ 92}893 ds
0005

— / (’UO ey + € ’UQ) Gdy Y, vi,vy € X(Q)
0

»Homogenization condition: 6, 20 = G =0(¢)

(the heat generated internally to the composite must have the same
order of magnitude of the heat conducted on the macroscale)

» Five models, depending on the magnitude of the interfacial
thermal resistance (Rocha & Cruz, 2001; Auriault & Ene, 1994)

Bi = O(¢*), a € {-1,0,1,2,3}  Here: Model II, a = 0.



HEAT CONDUCTION IN COMPOSITES (x)

® Application of the method

» Grouping equal powers of €...

[9 }8:{}5 =0

II
M _0,j=1,2,3
Oy

/c (39“ W]ﬁﬂf@ﬂ?ﬂﬁ]@@]ﬁﬂaﬁl)dy T
g Or; Or; dy; Or; Ox; oy Oy Oy

+ / Bi [v1] 0. [01] 4. 48 = / vy Gdy
AN, S S 0

oL Il ¢
vg 5 X(Q)



HEAT CONDUCTION IN COMPOSITES (xi)

® Application of the method

» Choosing, first, vy!! = 0 and, next, v,!! = 0...

VOH — O
L - . o |
e —_— d —_— B' ¥ 6 d — 0 '-_;Ir' ' _{Y Q
L‘:ﬂj ayi (an 8yj y ./{;}ﬂs 1 [Ll}aﬂs [ 1}6}95 S (1] - ( )

vil=0

(“)’{;5[ 995[ (‘.)E;{I . . |
i il dv = G od T X(0
_/ﬂ{-ﬂj an (81_} 8yj v _/ﬂtﬂ y Yy € ( )




HEAT CONDUCTION IN COMPOSITES (xii

® Application of the method

» Assuming separation of variables for 6,''(x,y)...

o1 (x = —d(y) 39]]

3:1333.
> Applying the periodicity property to the volume integrals
(Auriault, 1991; Rocha & Cruz, 2001) and surface integrals
(Rocha & Cruz, 2001)...

Fi 1 - . n - . ) n 1 i n - . 1 - .
lime_.g U f(x,y) d}f—/ g9(x,y) de =/ (/ f(x,¥) d}f—/ 9(x,y) dS) dy
J0 ! 400, . J0 Q‘;}t J Qe x JI ! )

0, representative volume element (RVE) of microstructure
: (assumed periodic) or periodic cell

' portion of phase interface inside €0



HEAT CONDUCTION IN COMPOSITES (xiii

® Results of the method
» Cell problem

1
Csj'%@d}r+/ [X ]rd‘s _/ Cwa dy Vv e Y( Q)

Y () = {'w < H%E(QPCNWMW,CC%C = W, Wy 4 C e = w’, [wlr =5 € ]R*}

» Homogenized problem

/ [ Gi iﬂ&id —/ [ i Gdy |dy Voi € X(Q)
[yl |0 93{? Jz; O, e

» Effective thermal conductivity tensor

11 # 1
Heuzkﬁq _ 1 / il 6o — 0% dy
km |Qj"'li‘ : ﬂ;-gc o “ ayﬂ




NUMERICAL METHODS (i)

® Geometrical models for the periodic cell

» Ordered arrays of spheres

one-particle
cell

A

/

» Disordered arrays of spheres

multi-particle cells voids




NUMERICAL METHODS (ii)

® Geometrical models for the periodic cell

» Ordered and disordered arrays of cylinders

one-particle
cubic cell

multi-particle cell

one-particle
parallelepipedonal cell



NUMERICAL METHODS (iii

® Mesh generation in 3-D

Procedure uses generator NETGEN (Schoberl, 2002)
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NUMERICAL METHODS (iv)

® Mesh generation in 3-D
Procedure uses generator NETGEN (Schoberl, 2002)
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NUMERICAL METHODS (v)

® Finite element discretization

» First order 1soparametric

v'Solution and geometry interpolated by 1° degree
polynomials.

v’ Simple computational implementation.

v'Volume and surface integrals can be evaluated
analytically.

v'Quadratic convergence of k.

el .
v Accurate results for k, ;> 100 only with excessive
refinement of the mesh, a burden on computational

time.



NUMERICAL METHODS (vi)

® Finite element discretization

» Second order 1soparametric

v’ Solution and geometry interpolated by 2° degree
polynomials.

v' More sophisticated computational implementation.

v'Volume and surface integrals must be evaluated
numerically.

v'Cubic convergence of k, .

el .

v' Accurate results for k£ .. > 100 without the need for an

e,ij
excessive refinement of the mesh.



NUMERICAL METHODS (vii

® Finite element discretization
» Cell problem

a(v, Xy) + b (’U.},XE) =/Vv) Yuv€ Y“(Qpc)

Oxp

u{r,x?} — / G j{‘v’ dy bilipgar operator, symmetric and positive-
0, dY; 3y definite

Jf{t;'} _ 1 Lf«'ﬂ{-f] 8_1' Jv linear functional related to direction of temperature
/ T dy gradient imposed externally

or (v, X;I;,I) = /Bi [leﬂy lv|[rds  pilinear and symmetric operator
T



NUMERICAL METHODS (viil

® Finite element discretization
» Treatment of volume integrals

Galerkin Method (Reddy, 1993; Hughes, 1987)

Xp = xﬁllnf =) Xooti a(vé,x;5) — kg
a=1 )
i> 5 _ (Y1, ¥2. y3)
| d(&.1,¢)
’L|0E ZLbLb E(EE) ﬁfg

e € e (OUg 06 QUE On | G B¢ o
e _ ~€ a _ a u 4 4 detJJ® d(dnd
I L S 5y ¥ // / (8& dy: | o dy | ¢ ayf) et dedna

. O s
EE. = / Cf bdv
ab o ] ay} ayz

A R L OUS an  ug ac\ (duf aE v an  duf AC\ |
T - + + det J* d(dnd
/ / / (96 dy;  On Oy; & 6*%-)(85 dy; + O By, T 8C By, ) Y H@




NUMERICAL METHODS (ix)

® Finite element discretization
» Treatment of surface integral

v'Duplication of degrees of freedom associated with
global nodes situated on the interface I'

v'"Modification of tetrahedra connectivity that possess at
least one node on I'

v'Calculation of the jumps of the functions (weight, test)
through the element surfaces on I

v Integration of the product of the jumps in I'

v'Sum of the resulting integrals to the appropriate
components in the global stiffness matrix



Duplication of degrees of freedom and
Modification of tetrahedra connectivity

BEFORE DUPLICATION AFTER DUPLICATION

fase dispersal




NUMERICAL METHODS (x)

® Contributions associated with node of vertex A

» Weight function restricted to node A
Valel = % ler

» Jump of weight function across I .-

0
P

walr , =valer —valer =valer = ¢ er

e ILd
> Jump of temperature across I’ ol = Xpkler = X ler

o) ., = Xadaler +XB Opler + Xo Poler +xM Puler + X Oxler + xP Fpler -

d d d q
Xa Qurler — XB Opiler — Xo Oorler — Xmr Oy ler — X P ' — XP ¢5dpf\ef,r



NUMERICAL METHODS (xi)

® Contributions associated with node of vertex A

sum to component K, ,

/ Bi foaly , [Xpn); ds=Bi (XA Goler Paler dsit-xB [ Hiler B ler ds+
T

i
e ee
T, L.

EEI

Xc (;5,(;1 ‘B,T (;58 ‘e,F ds + XM (;521 ‘B,F éi{‘e,? ds + XN (;5,(;1 ‘B,P (;5jc\r ‘B,P dS—|—
L, L, L,

d d
XP (;’521 ‘B,F (bcP ‘&T ds — XA (;521 ‘B,I‘ (;5‘4’ ‘e’,T ds — XB! (;5,(;1 ‘e,T (;53’ ‘e’,T ds—
TBEI Fee’ Pee’

d d d
Xc! éﬁl‘ef (;50"8’,? ds — XM (;521‘8,1“ anf‘e’,T ds — XNt éﬁl‘e,? qu"e’,T ds—
FEEF PEEF FEEI

XP! / Galer Pplerx ds)
T

gef



NUMERICAL METHODS (xii)

® Algorithm

For each node situated on I

» Identification of neighboring nodes (corner and median)

» Identification of its duplicates and of duplicates of
neighboring nodes

» Definition of weight function restricted to node and
tetrahedra which share the node on I

» Calculation of jumps of weight and temperature functions
across tetrahedra surfaces which share the node on I

» Evaluation of resulting integrals

» Sum of resulting integrals to the appropriate components in
the global stiffness matrix



NUMERICAL METHODS (xii1)

® Discrete system of equations

K'xy,=F"
Global stiffness matrix and global forcing vector assembled

from elemental matrices and elemental vectors, imposing
periodic boundary conditions on the outer surfaces of ),



NUMERICAL METHODS (xiv)

® [terative method (global minimum residual, GMRES, Paige
& Saunders, 1975)

» Appropriate for linear systems of equations whose
coefficient matrices are symmetric, but not necessarily
positive-definite

» Stopping criterion: based on the norm L, of the residual
vector, subject to a user-prescribed tolerance o

Au=>b
r=b—Au I'OEb—Au*(O)
1/2
Irlle, = (27 0)* ol = (xxo)
fivls: _
|70 |z,




RESULTS (i)

2-D effort: smaller than the 3-D effort, and 1t 1s (still)
valuable for random arrangements

Simple cubic array of spheres with uniform interfacial
thermal resistance (and, also, with perfect thermal contact)

Disordered array of spheres with uniform interfacial thermal
resistance and pores in the matrix (illustrative computations)

Parallelepipedonal array of cylinders with uniform interfacial
thermal resistance

Tentative comparison with experimental data
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Extension
to 3-D

cubic
array
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Simple cubic array of spheres
Validation with semi-analytical results by Cheng & Torquato (1997)

R.=x-1

critical thermal contact resistance

a=10, R,= 9 o= 10000, R, = 9999
c R=5 R =30 R = 5000 R = 20000

i ko1 i KO i KO i KO
0,05 1,0275 1,0275 0,9569 0,9569 1,0379 1,0380 0,9703 0,9703
0,10 1,0556 1,0556 0,9150 0,9150 1,0768 1,0769 0,9412 0,9412
0,15 1,0841 1,0841 0,8742 0,8742 1,1168 1,1168 0,9126 0,9126
0,20 1,1131 1,1132 0,8348 0,8348 1,1577 1,1578 0,8845 0,8845
0,25 1,1428 1,1428 0,7957 0,7957 1,1997 1,1998 0,8569 0,8569
0,30 1,1728 1,1729 0,7577 0,7577 1,2428 1,2429 0,8299 0,8298
0,35 1,2036 1,2036 0,7203 0,7203 1,2870 1,2870 0,8030 0,8029
0,40 1,2346 1,2347 0,6834 0,6833 1,3321 1,3322 0,7764 0,7763
0,45 1,2663 1,2663 0,6465 0,6464 1,3783 1,3783 0,7499 0,7498
0,50 1,2983 1,2983 0,6092 0,6091 1,4255 1,4254 0,7234 0,7232
0,51 1,3047 1,3047 0,6016 0,6015 1,4349 1,4349 0,7180 0,7178




Simple cubic array of spheres with uniform interfacial thermal resistance

Validation with semi-analytical results by Cheng & Torquato (1997)
Convergence plots of absolute error
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Simple cubic array of spheres

Distinct behaviors for the effective thermal conductivity as a function
of the magnitude of the interfacial thermal resistance

fsol L L 101
1 a=10 a = 10.000 a4
140 | —p—R=05 4R =>5.000 v B
1—0—R =30 —0--R = 20.000 ]
1.30 — 4 L
i o | +* i
1.20 — AT u
4 £ | +.--"'-.-+; — .
5 110 — ;.., B particle thermal
fe! LA | conductivity dominates
1.00 — -
g
090~ PPy, | contact thermal
| e Y R . o o
L resistance dominates
0.80 — o P ¢ |
! QH h 6 ;
0.70 — b WY i
; .-.-e'“"*-...,_
0.60 ——T T T T T T T T T T T T T

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.35
C



Disordered array of spheres with uniform interfacial
thermal resistance and pores within the matrix o
(1llustrative calculations, acurate: novelty!) '

“

Values of k2 (C) for ¢ = 0.15 Values of kY (C) for ¢ = 0.15
a=10, R-=9 o = 10000, R, =9999

Without voids  With 0.56% voids Without voids With 0.56% voids

¢ R=5 R=3 R=5 R=3 ¢ R=5000 R=20000 R=5000 R =20000
1 L0286 03509 1.0256  0.8469 1 1.0497 0.8789 1.0469 0.8751
2 10284 08466 1.0250  0.8440 2 1.0492 0.8761 1.0457 0.8733
3 10288 08571 1.0254 0.8543 1 1.0505 0.8831 1.0470 0.8802
4 1.0286 08518 1.0253  0.8490 4 1.0498 0.8795 1.0465 08766
5  1.0287 08557 1.0257  0.8525 5 1.0503 0.8821 1.0472 0.8790
6 10287 08535 1.0255 0.8502 f 10500 0.8807 1.0469 0.877:
7T 10284 08462 1.0252 0.8424 (] 1.0492 0.8758 1.0460 0.8721
8  1.0287 08548 1.0256  0.8502 8 1.0502 0.8816 1.0473 0.8772
9  1.0282 08409 1.0251 083171 ] 1.0487 0.8724 1.0457 0.8688
10 1.0280 08337 1.0248 08305 10 1.0480 0.8678 1.0448 0.8646
kY 10285  0.849  1.0253  0.846 kN 1.0496 0.878 1.0464 0.874
Sy 0.0003 0007 00003 0.007 S 0.0008 0.005 0.0008 0.005

Y 10308  0.851 — — 2 10522 0.880 — —




Parallelepipedonal array of cylinders

Validation with rule-of-mixtures results, and results from the
expression by Hasselman & Johnson (1987) for unidirectional ¢
fibrous composites with low ¢

c=0,10,p,=5e =100

Bi=10° Bi=10" Bi =102
§ i1 K5 507 K5 T AR
6 0,8852 0,8335 0,9619 0,8401 1,9352 1,2283
8 0,8902 0,8286 0,9991 0,8349 2,3972 1,2160
12 0,8956 0,8226 1,0839 0,8285 4,1371 1,2023
13,5 0,8981 0,8204 1,1214 0,8262 5,8827 1,1964
P max = 14 10,900 0,8182 10,900 0,8240 10,900 1,1920
el T e, o1 e, T
10,900 0,8182 10,900 0,8240 10,900 1,1920




Parallelepipedonal array of cylinders

Sample of new results

Parallelepipedonal array p, = p;= 20

0,10 0,8872 | 0,8356 | 1,4647 | 1,2005 | 0,8872 | 0,8356 | 1,9586 | 1,2586

0,20 0,7710 | 0,69/1 1,8674 | 1,4490 | 0,7710 | 0,6971 | 2,6674 | 1,5990

0,30 0,6584 | 0,5743 | 2,3184 | 1,7568 | 0,6584 | 0,5743 | 3,5628 | 2,0540

0,40 0,5520 | 0,4613 | 2,8671 | 2,1432 | 0,5520 | 0,4613 | 4,8528 | 2,6847

0,50 0,4530 | 0,3541 | 3,5772 | 2,6441 0,453 0,354 6,977 3,627

0,60 0,3619 | 0,2492 | 4,5568 | 3,3292 0,362 0,249 11,27 5,244

0,70 0,2785 | 0,1406 | 6,0220 | 4,3667 0,278 0,141 25,03 9,094




COMPARISON WITH

EXPERIMENTAL DATA (tentative)

® Experimental work by Mirmira (1999)

» Measurements of longitudinal and transverse effective
thermal conductivities of short fiber composites as a
function of temperature

» Characteristics of composites

v Matrix: cianate ester

v'Dispersed phase: carbon fibers (DKE X, DKA X,
K22XX)

v'Fiber volume fractions in fabricated composites:
55%, 65% and 75%

v Aspect ratio of fibers: 20
v'Pores volume fraction: 4% (estimation)
v Estimated interfacial thermal conductance: 10° W/m? K

v'Fibers are distributed 1n parallel planes and randomly
oriented



COMPARISON WITH
EXPERIMENTAL DATA (tentative)

® Numerical results: application of developed methodology to
the parallelepipedonal array of cylinders

® Analytical results: expressions for the effective
conductivities obtained by various authors for arrays of
cylindrical fibers randomly arranged 1n space




COMPARISON WITH
EXPERIMENTAL DATA (tentative)

Symbols: Exp. = experimental Num. = numerical Analit. = analytical (Dunn et al.,
1993)

Composites with DKA X type fibers (longitudinal conductivity)

55% 65% 735%

T(K) | Exp. | Num. | Analit. | Exp. | Num. | Analit. | Exp. | Num. | Analit.
293,15 | 50,12 | 64,37 69,44 66,58 | 29,73 101,06 | 71,15 | 53,88 152,31
313,15 | 49,64 | 58,87 63,92 66,06 | 26,98 93,32 /71,00 | 49,04 141,34
333,15 | 49,14 | 60,72 65,78 65,09 | 27,90 95,94 70,50 | 50,66 145,06
353,15 | 48,22 | 62,56 67,62 64,70 | 28,82 98,52 70,00 | 52,28 148,72
373,15 | 46,49 | 67,97 73,00 62,13 | 31,55 106,04 | 69,60 | 57,08 159,30




COMPARISON WITH
EXPERIMENTAL DATA (tentative)

Symbols: Exp. = experimental Num. = numerical Analit. = analytical (Dunn et al.,
1993)

Composites with DKA X type fibers (transverse conductivity)

55% 65% 735%

T(K) | Exp. | Num. | Analit. | Exp. | Num. | Analit. | Exp. | Num. | Analit.

293,15 | 6,80 3,41 3,21 9,10 5,51 4,39 7,83 14,46 6,50

313,15 | 6,80 3,08 2,90 9,08 4,98 3,96 7,81 13,09 5,88

333,15 | 6,76 3,19 3,00 8,97 5,15 4,10 7,79 13,55 6,08

353,15 | 6,75 3,30 3,10 8,80 5,33 4,25 7,79 14,00 6,29

373,15 | 6,65 3,63 3,41 8,80 5,86 4,67 7,74 15,37 6,92




Disordered array of cylinders with interfacial thermal
resistance and pores (c, = 0,5%) (novelty!)

Test case 1: a=250e Bi= 10

Test case 2: a =250 ¢ Bi = 10°

Test case 3: k;; = k,, = k33, =250, ky, = ki3 =k,; =200e B1=10
Test case 4: k;; = k,, = k33 =250, ky, = k;3 = k,; =200 e Bi = 10°

Effective thermal conductivity ¢ = 13% and p;= 1,5
Test

est case h - p
K] fe99 fugd

1 1,299 1,189 1,083

2 0,8649 0,8497 0,8336

3 1,282 1,180 1,080

4 0,8650 0,8497 0,8336




DOABLE FUTURE WORKS (i)

Implementation of more representative 3-D geometric models
for the microstructures of composite materials

Implementation of variable interfacial thermal resistance on
the surface of the fibers (Duschlbauer et al., 2003; Fletcher,
2001)

Appropriate treatment of microscale for analysis of
configurations that are close to maximum packing

Extension of developed methodology to determine effective
mechanical properties of composite materials (for example,
effective elastic modulus

Consideration of the effect of properties varying with
temperature
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Calculo das contribuicoes associadas ao n6 mediano Mem I

nigao da funga er = 6]
» Definicdo da fungédo peso  UMlel = @psleT 0
slcul lto da fungs ' o
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CALCULO DAS INTEGRAIS DE SUPERFICIE RESULTANTES
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NUMERICAL METHODS (vii

® Finite element discretization
» Cell problem

a(v, X;I) + br (v, X;I) = l(v) Vv € YH(QM)

a(v, XLI ) = / Gi(y) &( d}f bﬂiI.l?ar ope?aFor, symmetric and
Y7 o, dy; ay positive-definite

£(v) = / G (¥) v dy linear functional related to direction of

) Jy; temperature gradient imposed externally

br(v, X)) = / Bi [x, ] [tlrds  bilinear and symmetric operator
r



NUMERICAL METHODS (v

® Finite element discretization

» Treatment of volume integrals
Galerkin Method (Reddy, 1993; Hughes, 1987)

111

X5 =Xploe = Zl%p v a(vf,x5) — kS,
- = _
= o =3 ) — 15 = s
e LS G (2
%= [ %;fd

vy o¢

_ /]1 5/1 . LOUL on dwg ac\ (duE g Qg an |
B 3& S‘yj on dy; 9 dy; )\ 9& dy;  In Oy;

(“)(.: 8yj

) det J° d(dn d¢



NUMERICAL METHODS (ix)

® Finite element discretization

» Treatment of surface integral

v'Duplication of degrees of freedom associated with
global nodes situated on the interface Gamma.

v'"Modification of connectivity of tetrahedra that possess
at least one node on Gamma.

v'Calculation of the jumps of the functions in the
integrand through the element surfaces on Gamma.

v'Integration of the products of the jumps over Gamma.

v'Sum of the resulting integrals to the appropriate
components in the global stiffness matrix.



Duplication of degrees of freedom.
Modification of connectivity of tetrahedra.

BEFORE DUPLICATION AFTER DUPLICATION

fase dispersal




NUMERICAL METHODS (x)

® Contributions associated with node of vertex A

» Weight function restricted to node A

UAlel = @ler
» Jump of weight function across Gamma,,-
0
=

walr , =valer —valer =valer = ¢ler
> Jump of temperature across Gammage: [1,| — =xiler = Xoler

o) ., = Xadaler +XB Opler + Xo Poler +xM Puler + X Oxler + xP Fpler -

q q d J
Xar Qurler — XB Opiler — Xor G| r — xmr Oyl — X (;5?\?"8’,? — Xp' ¢5§3f\ef,r



NUMERICAL METHODS (xi)

® Contributions associated with node of vertex A

sum to component K, ,

/ Bi foaly , [Xpn); ds=Bi (XA Goler Paler dsit-xB [ Hiler B ler ds+
T

i
e ee
T, L.

EEI

Xc (;5,(;1 ‘B,T (;58 ‘e,F ds + XM (;521 ‘B,F éi{‘e,? ds + XN (;5,(;1 ‘B,P (;5jc\r ‘B,P dS—|—
L, L, L,

d d
XP (;’521 ‘B,F (bcP ‘&T ds — XA (;521 ‘B,I‘ (;5‘4’ ‘e’,T ds — XB! (;5,(;1 ‘e,T (;53’ ‘e’,T ds—
TBEI Fee’ Pee’

d d d
Xc! éﬁl‘ef (;50"8’,? ds — XM (;521‘8,1“ anf‘e’,T ds — XNt éﬁl‘e,? qu"e’,T ds—
FEEF PEEF FEEI

XP! / Galer Pplerx ds)
T

gef



NUMERICAL METHODS (xii)

® Algorithm
For each node situated on Gamma

» Identification of neighboring nodes (corner and median).

» Identification of its duplicates and of duplicates of
neighboring nodes.

» Definition of weight function restricted to node and to
tetrahedra which share the node on Gamma.

» Calculation of jumps of weight and temperature functions
across tetrahedra surfaces which share the node on Gamma.

» Evaluation of resulting integrals.

» Sum of resulting integrals to the appropriate components in
the global stiffness matrix.



NUMERICAL METHODS (xii1)

® Discrete system of equations

K Xpn = F'

Global stiffness matrix and global forcing vector are
assembled from elemental matrices and elemental
vectors, imposing periodic boundary conditions on the
outer surfaces of Omega,,.



NUMERICAL METHODS (xiv)

® Jterative method
Global minimum residual, GMRES (Paige & Saunders, 1975)

» Appropriate for linear systems of equations whose

coefficient matrices are symmetric, but not necessarily
positive-definite.

» Stopping criterion: based on the norm L, of the residual
vector, subject to a user-prescribed tolerance Sigma.

Au=>b
r=b—Au I'OEb—Au*(O)
1/2
Irlle, = (27 0)* ol = (xxo)
fivls: _
|70 |z,




RESULTS

2-D effort: ‘smaller’ than the 3-D effort, and 1t 1s (still)
valuable for random arrangements.

Simple cubic array of spheres with uniform interfacial
thermal resistance (and, also, with perfect thermal contact).

Disordered array of spheres with uniform interfacial thermal
resistance and pores in the matrix (illustrative computations).

Parallelepipedonal array of cylinders with uniform interfacial
thermal resistance.

Comparison with experimental data: still tentative!



DETERMINACAO DA CONDUTIVIDADE TERMICA EFETIVA DE
COMPOSITOS FIBROSOS UNIDIRECIONAIS RANDOMICOS Tool developed, but not

| systematically used.

Leandro Bastos Machado

)

Figura 6.8: A célula de Voronoi com 17 fibras e ¢ = 0, 375. Figura 6.10: Malha para as realizacdes com 32 fibras e ¢ = 0, 5.




C a
2 10 50
— s e B | Fe [ ken | P | ke [ Fen | B [k | Fem ||
th  Bra ziiian Longress of Mechranica rginE=aing 16767 | 1.677 45443 | 4946 9.5355 | 9.546 ||
20025 da Nevarnlite a@ 1399 Weovambar 22 - 26 1308 Agueas oo Lpaoia e ool kpn | kusa kea | kus.a kupa | kupa |
) ) 0.75 | 0.06 [ 1.620 | 1.686 || 0.06 | 4.240 [ 5.833 § 0.06 | 6.793 | 23.61
BOUNDS FOR THE EFFECTIVE CONDUCTIVITY OF Y. | E. Y. | E. i | E ‘
UNIDIRECTIONAL COMPOSITES BASED ON ISOTROPIC 165 | 2.0% | 50 | 16% | 15 | 56%
kipa | kupa ksa | kupa kusn | kupa
had MICROSCALE MODELS 0.04 [ 1.647 | 1.683 || 0.04 [ 4.524 [ 5.653 || 0.04 [ 7.714 | 2177
Leandro B. Machado . » ken | Er k. E, ken | Er
peancro B e Microscale models validated. RYNE ey | Eo | ea | B
- + . . 1 ) s X RN e Wy N SO . 16 ke ke‘h ﬁ ke ke,h ﬁ kc ke,h
Federal University of Rio de J aneiro, EE/ CQI PE, Depa.l. tment of Mechavical Engineering e T IE 7037 T E.805 evioNnlci)
Cx. P. 68503 — 21945-970 — Rio de Janell‘o, RJ, Brazil kLB,h kUB,h ken | kupa ks | kupa
e-mail: manuel@serv.com.ufrj.br 0.78 | 0.06 | 1.671 | 1.719 || 0.06 [ 4.983 | 6.126 || 0.06 | 9.575 | 24.66
Fr | _E, Fer | B Fen | E,
TN B 170 | 1% 5.6 | 10% 17 [ #@% |
rd ™. kisn | ku.n ks | kusa kupn | kupa
g . 0.04 [ 1.695 { 1.717 | 0.04 [5.369 | 6.004 || 0.04 [ 11.76 [ 22.96
QCD ken E‘l‘ EeJL E'_1- ke z"gr
\ 171 | 0.64% | 57 | 56% | 7 | 3% |
I .e ke ke,h ﬁ ke ke.h ﬁ ke ke,h
AN f 17220 | — 6.004 | — 05 | —
V kuen | kusa kLea | kuBa kx| kupa
0.785 | 0.06 | 1.680 | 1.724 [| 0.06 | 5.16 | 6.19 | 0.06 [ 10.5 | 24.9
ke,h E, kcJ_n E, ke,b -‘E-r'
(a) (b) L70 T13% 57 [ 90% 18 | 4% |
. , g . : kran | kuBa ks | kua ken | kups
Figura 6.1: Células periddicas dos arranjos ordenados triangular (a) e quadrado (b). 0.04 T8 1723 1 004 FEE0 T 6081 0.04 [ 195 1 233
ke.h Er ke,h Er ke,h Er
| 1713 | 0.55% 5.8 | 42% 18
| ﬁ ke ke,h ﬁ kc ke,h ﬁ ke ke,h
| — — — — — ——
‘ kin | kusn ks | kupa ksn | kusn
wf/4 | 0.06 | 1.681 | 1.725 |} 0.06 [ 5.18 6.19 || 006 | 10.6 24.9
) :g_%i ! Ee,h E, -Ee.h E, Fe.h E,
LR L70 | 1.3% 5.7 [ 85% | 18 [ 4%
PR % kaa | kysa kg | kusa kLg,s | kuph
oy CRRERPR0 0.04 [ 1.705 [ 1723 || 0.04 [ 561 | 6.09 | 0.04 [ 137 | 23.3
4 ; 1.714 | 0.53% 59 | 41% 18 | 26%

Table 1: Effective conductivity results for the square array

Parameters: ¢ € {0.75,0.78,0.785, 7/4}, @ € {2,10,50}]
B € {0.04,0.06}.

|
Figure 2: llustrative finite element meshes for the square array, ¢ = 0.75: mesh on the
left is for Q. (M = 0), and mesh on the right is for both £ and U (N =2).



Figura 6.14: Célula de Voronoi com 32 fibras e ¢ = 0,5, onde a malha s6 pode ser |

gerada com a eliminagio de regides de estreito.

Tabela 6.10: Resultados obtidos para as realizagoes com 32 fibras, c = 0,9 e & €
{2,10,50}, onde a geragdo de malha é possivel: numéricos, ke, limites 1sotropicos,
kit . € ks p, limites anisotropicos, kian € ksa n, estimativas para a condutividade, &

e ka, e erros relativos, Epy e E,a. Parimetros das regides de estreito: § = 0,06 e

7%=0,1.  Microscale models useful.

o=

ken | Fun | ksin | Bt | Brp | kian | ksan ' ka | Era

1,410 | 1,307 | 1,413 | 1,4 | 5,5% | 1,308 | 1,412 | 1,4 | 5,2%
a=10

ke | kun | ksin | k1 | Eep | Kian | ksan | ka | Era

2,636 | 2,545 | 2,768 | 2,7 | 4,2% | 2,545 | 2,758 | 2,7 | 4,0%
a =50

ken | kun | ksia | &t | Erx | kian | ksam ! ka | Era

3,454 | 3,239 | 4,134 { 3,7 | 12% | 3,239 | 4,067 | 3,7 | 11%




Extension
to 3-D

cubic
array

Microscale

models can be
useful in 3-D.
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Simple cubic array of spheres
Validation with semi-analytical results by Cheng & Torquato (1997)

R.=x-1

critical thermal contact resistance

a=10, R,= 9 o= 10000, R, = 9999
c R=5 R =30 R = 5000 R = 20000

i ko1 i KO i KO i KO
0,05 1,0275 1,0275 0,9569 0,9569 1,0379 1,0380 0,9703 0,9703
0,10 1,0556 1,0556 0,9150 0,9150 1,0768 1,0769 0,9412 0,9412
0,15 1,0841 1,0841 0,8742 0,8742 1,1168 1,1168 0,9126 0,9126
0,20 1,1131 1,1132 0,8348 0,8348 1,1577 1,1578 0,8845 0,8845
0,25 1,1428 1,1428 0,7957 0,7957 1,1997 1,1998 0,8569 0,8569
0,30 1,1728 1,1729 0,7577 0,7577 1,2428 1,2429 0,8299 0,8298
0,35 1,2036 1,2036 0,7203 0,7203 1,2870 1,2870 0,8030 0,8029
0,40 1,2346 1,2347 0,6834 0,6833 1,3321 1,3322 0,7764 0,7763
0,45 1,2663 1,2663 0,6465 0,6464 1,3783 1,3783 0,7499 0,7498
0,50 1,2983 1,2983 0,6092 0,6091 1,4255 1,4254 0,7234 0,7232
0,51 1,3047 1,3047 0,6016 0,6015 1,4349 1,4349 0,7180 0,7178




Simple cubic array of spheres with uniform interfacial thermal resistance
Validation with semi-analytical results by Cheng & Torquato (1997)
Convergence plots of absolute error
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Simple cubic array of spheres

Distinct behaviors for the effective thermal conductivity as a function
of the magnitude of the interfacial thermal resistance

Lso—— L o 1o 101
1 a=10 a = 10.000 a4
140 | —p—R=05 4R =>5.000 v B
1—€—R =30 &R = 20.000 i
1.30 — e L
i o | +* i
1.20 — AT u
| Pl gl i :
B A B particle thermal
k110 il
ol A | d ity d .
e - conductivity dominates
1.00 — -
SO
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| o oo resistance dominates
0.80 — o P ¢ |
| e T
0.70 — b WY i
; .-.-e'“"*-...,_
0.60 ——T T T T T T T T T T T T T
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Disordered array of spheres with uniform interfacial
thermal resistance and pores within the matrix '

Illustrative calculations, accurate: novelty!

“

Values of k2 (C) for ¢ = 0.15 Values of kY (C) for ¢ = 0.15
a=10, R-=9 o = 10000, R, =9999

Without voids  With 0.56% voids Without voids With 0.56% voids

¢ R=5 R=3 R=5 R=3 ¢ R=5000 R=20000 R=5000 R =20000
1 L0286 03509 1.0256  0.8469 1 1.0497 0.8789 1.0469 0.8751
2 10284 08466 1.0250  0.8440 2 1.0492 0.8761 1.0457 0.8733
3 10288 08571 1.0254 0.8543 1 1.0505 0.8831 1.0470 0.8802
4 1.0286 08518 1.0253  0.8490 4 1.0498 0.8795 1.0465 08766
5  1.0287 08557 1.0257  0.8525 5 1.0503 0.8821 1.0472 0.8790
6 10287 08535 1.0255 0.8502 f 10500 0.8807 1.0469 0.877:
7T 10284 08462 1.0252 0.8424 (] 1.0492 0.8758 1.0460 0.8721
8  1.0287 08548 1.0256  0.8502 8 1.0502 0.8816 1.0473 0.8772
9  1.0282 08409 1.0251 083171 ] 1.0487 0.8724 1.0457 0.8688
10 1.0280 08337 1.0248 08305 10 1.0480 0.8678 1.0448 0.8646
kY 10285  0.849  1.0253  0.846 kN 1.0496 0.878 1.0464 0.874
Sy 0.0003 0007 00003 0.007 S 0.0008 0.005 0.0008 0.005

Y 10308  0.851 — — 2 10522 0.880 — —




Parallelepipedonal array of cylinders (Matt & Cruz, 2006)

Validation against rule-of-mixtures results, and results from the,
expression by Hasselman & Johnson (1987) for unidirectional *
fibrous composites with low c.

c=0,10,p,=5e =100

Bi=10° Bi=10" Bi =102
§ i1 K5 507 K5 T AR
6 0,8852 0,8335 0,9619 0,8401 1,9352 1,2283
8 0,8902 0,8286 0,9991 0,8349 2,3972 1,2160
12 0,8956 0,8226 1,0839 0,8285 4,1371 1,2023
13,5 0,8981 0,8204 1,1214 0,8262 5,8827 1,1964
P max = 14 10,900 0,8182 10,900 0,8240 10,900 1,1920
el T e, o1 e, T
10,900 0,8182 10,900 0,8240 10,900 1,1920




Parallelepipedonal array of cylinders

Sample of new results!

Parallelepipedonal array p, = p;= 20

0,10 0,8872 | 0,8356 | 1,4647 | 1,2005 | 0,8872 | 0,8356 | 1,9586 | 1,2586

0,20 0,7710 | 0,69/1 1,8674 | 1,4490 | 0,7710 | 0,6971 | 2,6674 | 1,5990

0,30 0,6584 | 0,5743 | 2,3184 | 1,7568 | 0,6584 | 0,5743 | 3,5628 | 2,0540

0,40 0,5520 | 0,4613 | 2,8671 | 2,1432 | 0,5520 | 0,4613 | 4,8528 | 2,6847

0,50 0,4530 | 0,3541 | 3,5772 | 2,6441 0,453 0,354 6,977 3,627

0,60 0,3619 | 0,2492 | 4,5568 | 3,3292 0,362 0,249 11,27 5,244

0,70 0,2785 | 0,1406 | 6,0220 | 4,3667 0,278 0,141 25,03 9,094




Disordered array of cylinders with interfacial thermal
resistance and pores (¢,,,,., = 0,9%) (novelty!)

Test case 1: a=250e Bi =10

Test case 2: a =250 ¢ Bi = 10°

Test case 3: ky; = k,, = k33 =250, ky, = ki3 =k,; =200 e B1= 10
Test case 4: k;; = k,, = k33 =250, k;, = k;3 =k,; =200 e Bi = 10

Effective thermal conductivity ¢ = 13% and p;= 1,5
Test

est case h - p
K] fe99 fugd

1 1,299 1,189 1,083

2 0,8649 0,8497 0,8336

3 1,282 1,180 1,080

4 0,8650 0,8497 0,8336




Imp!

DOABLE FUTURE WORKS

lementation of more representative 3-D geometrical

models for the microstructures of composite materials.

Imp]

lementation of variable interfacial thermal resistance on

the surface of the fibers (Duschlbauer et al., 2003; Fletcher,
2001).

Appropriate treatment of microscale for analysis of
configurations that are close to maximum packing.

Extension of developed methodology to determine effective
mechanical properties of composite materials (for example,
effective elastic moduli).

Consideration of the effect of properties varying with
temperature.
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Homogenization of Temperature-Dependent Thermal

Conductivity in Composite Materials

Peter W. Chung* and Kumar K. Tamma'
University of Minnesota, Minneapolis, Minnesota 55455
and
Raju R. Namburu?
U.S. Army Research Laboratory, Aberdeen Proving Grounds, Maryland 21005

Of the various homogenization approaches, the asymptotic expansien hemogenization (AEH) approach for
homogenizing nonlinear composite material properties continues to grow in prominence due to its ability to handle
complex microstructural shapes while relating continuum fiel ds of different scales. The objectiveis tostudythe AEH
approach for nonlinear thermal heat conduction with temperature-dependent conductivity. First, twe approaches
are proposed to investigate the sensitivity of the homogenized conductivity to higher-order terms of the asymptotic
series. Under conditions of symmetry such as in unidirectional composites, the two approaches give the same
homogenized properties. Then validations are shown for unidirectional composites for changing volume fraction
and temperature, The validations are performed using measurements and analytical formulas available in the
literature. The findings show good agreement between the present numerical predictions and independent results.
Finally, a simple nonlinear steady-state heat conduction problem is demonstrated to illustrate the multi-scale

procedure. The numerically predicted results are verified using a Runge-Kutta solutiow,

Although limited developments
are available in homogenization o1 linear conductivity,™ no ef-
forts 1o date have treated the nonlinear temperature dependence of
conductivityor shown how such approachessubstantiatethe results.

The smaller the magnitude of g, the smaller the influence of the

‘macrolevel temperature gradients on the microscale homogenized

properties. Under certain conditions, the difference between the ap-
proaches is nominal. Conditions when the linearized and nonlinear
homogenizationequations yield identical or nearly identical results
are 1)the microstructuralgeometry contains symmetries, 2) the ma-
terial is homogeneous,3) 87" /9x =0, and 4} ¢ « 1.

In summary, the steps in the proposed linear and nonlinear com-
putational procedures are enumerated as fotlows.

Linear

The linear approach assumes that the temperatures are constant
in Y. The procedure for determining the homogenized conductivity
in o finite element sense is as follows:

1) Compute the macrotemperaturedistribution,

2) Determine the element average (at centroid or integration
poinis) temperatures for each macrolevel element,

3) Determine the individual phase conductivities at the average
temperature at each microlevel element.

4)Solvethe auxiliaryequation(10) for x/ usingthe conductivities
from step 3.

5) Use the solution for x/ in Eq. (15) to determine the effective
conductivity of the macroelement,

Nonlinear

The nenlinear approach makes ne restrictions on the tempera-
ture distribution in ¥. This results in a nonlinear dependence of
the homegenized conductivity ou the local temperature fields. The
procedure to determine the effective conductivity is as follows:

1) Compute the macrotemperature distribution.

2) Detwermine the clement average (or centroid or integration
points) temperatures for each macroleve] element,

3) Solve for x/ in Eq. (12) using the conductivity values for the
presentiteration.

4) Determine the microscale temperatures usirg the first two
terms in Eq. (4).

5) Update the conductivities of the constituents using the mi-
croscale temperatures.

6) Loop back to step | until x/ converges.

7) Theeffectiveconductivityisthencomputedfrom the converged
corrector functions x /.
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THE END !!

THANK YOU !!



