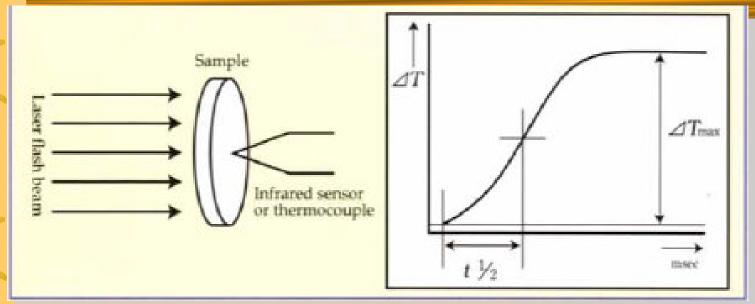
Universidade Federal da Paraíba Laboratório de Energia Solar

Método Flash
Estimação da Difusividade Térmica em Meios
Semi-transparente

Prof. Dr. Zaqueu Ernesto da Silva

Objetivos

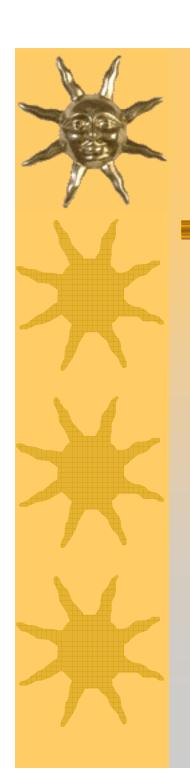
- ✓ Apresentar um histórico do Metodo Flash
- ✓ Metodologia de Estimação da difusividade térmica em meios Semitransparentes


Método Flash

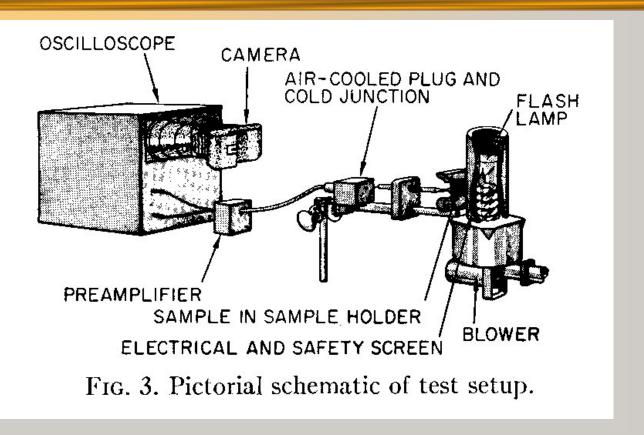
Princípio

- Corpo de Prova cilíndrico de faces paralelas.
- Inicialmente isotérmico.
- Submetido a um pulso térmico de energia radiante.
- ➤ A fonte é usualmente um LASER ou uma lâmpada flash de xenon.
- Duração do tempo de irradiação é da ordem de 1 milisegundo ou menos.
- A elevação da temperatura da face oposta do corpo de prova é medida e os valores da difusividade térmica são estimados a partir dos dados da elevação da temperatura versus tempo.
- A temperatura ambiente pode ser controlada por um pequeno forno ou um "chiller".

Método Flash


Observação

A massa térmica do sistema deve ser pequena tanto quanto o possível para que uma rápida mudança na temperatura e o registro dos dados da evolução da temperatura no tempo também possa ocorrer rapidamente.



Método Flash - Histórico

- ➤O Método Flash foi descrito pela primeira vez em 1960 by Parker, Butler, Jenkins, and Abbott do U.S. Navy Radiological Defense Laboratory.
- Em 1961 aparece o primeiro artigo sobre o Método Flash (Parker W.J., Jenkins R.J., Buttler G.P., Abbot G.L., J. Appl. Phys., Vol 32, n° 9, 1961).
- ➤O método flash face oposta Corpo de prova sólido, bom condutor de calor e de pequenas dimensões (2 x 2 cm, 1 à 3 mm de espessura).
- O modelo teórico unidimensional, sem perdas de calor e a técnica de identificação elementar (metade do tempo de alcance da temperatura máxima).
- Sistema de aquisição era constituído de um termopar de cromo-alumel (contacto separado), de um amplificador, de um osciloscópio e de uma máquina fotográfica do tipo polaróide.
- ➤O pulso térmico era produzido por um flash de 400 Joules.

Método Flash - Histórico

Método Flash – 10 anos depois

Melhorias foram realizadas nos Estados Unidos foram focadas:

- No dispositivo experimental.
- Sistema de aquisição de dados
- ➤ Modelo Teórico

Considerar as perdas.

Duração do Pulso

Pouco progresso sobre a Técnica de Identificação.

Correções sobre o método de PARKER

- Considerar novos parâmetros supostamente conhecidos.
- A nível de pulso térmico Aparecimento do do LASER.
- Coutros meios de aquecimento.

Método Flash – Durante os anos 70

A Europa, em particular a FRANÇA e a INGLATERRA vão se interessar pelo método FLASH

➤ Método Flash se desenvolve rapidamente.

Modelos Teóricos 3D são considerados Novos métodos de identificação (coeficiente de perdas)

- Desperta o interesse de utilização do Método Flash para identificar outras grandezas dos materiais homogêneos (Resistência Térmicas de Contacto)
- Os registradores vão substituir os osciloscópios. Inicialmente Galvanômetros depois potenciômetros.
- Cos termopares de semicondutores aparecem (350 μV/K em lugar de 40 μV/K).
- Muda a faixa de temperatura baixa e alta temperaturas.

Método Flash – Durante os anos 80

Entrada dos países do Leste Europeu.

- Os pesquisadores da área de automação, começam a utilizar técnicas de identificação. Isto é possível graças ao progresso eletrônica numérica e centrais de aquisição de boa qualidade (sem ruídos em particular).
- Medições de temperaturas sem contacto (por fotomultiplicador depois por detector fotovoltaico ou foto resistivo) modificam radicalmente as possibilidades d aplicação.
- Medições de temperaturas na face frontal se torna possível;
- E associado ao uso do laser como fonte de pulso as estimações à altas temperaturas se torna possíveis

Método Flash – Durante os anos 90

- PAparece no sei da comunidade Engenharia Térmica o paradigma "Métodos INVERSOS" e o arsenal matemático que o acompanha, fez realmente progredir a METROLOGIA TÉRMICA em todas as suas possibilidades.
- A utilização da Câmara Infravermelho Instrumento de medida que vai ainda estender as aplicações do método aos materiais anisotrópicos ou da busca de falhas em novos materiais.
- O Osciloscópio Numérico e as cartas de aquisição de dados permitem aumentar o suporte técnico experimental

Método Flash - Difusividade Térmica

O caso clássico da medida da difusividade térmica de um material homogêneo, o modelo 1D com perdas (O estudo de sensibilidade mostra que as perdas laterais são correlacionadas com as perdas axiais):

$$T = \frac{Q}{\rho ce} f\left(\frac{he}{\kappa}, \frac{\alpha t}{e^2}\right)$$

Neste caso três parâmetros precisam ser identificados:

$$\frac{Q}{\rho ce}$$
, $\frac{he}{\kappa}$, $\frac{\alpha}{e^2}$

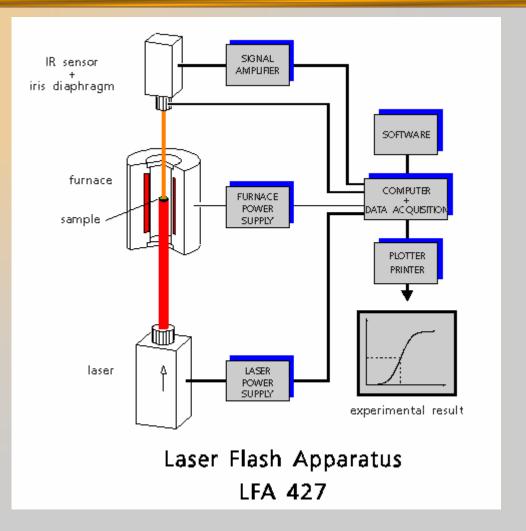
As condições de validade permitem determinar a espessura do corpo de prova para poder negligenciar a forma do pulso.

<u>Método Flash – Dispositivos Experimentais</u>

Os dispositivos experimentais são de diversos tipos, combinando o gerador do pulso e o detector de temperatura:

- ➢ Pulso do tipo Flash ou Laser
- Detector de temperatura seja de termopares ou infravermelho

Exemplos


- Lâmpada Flash + Termopares de semi-condutores Baixa temperatura ou/e corpos de prova de grandes dimensões.
- Lâmpada Flash + Detector infravermelho Médias temperaturas e/ou corpos de provas de grandes dimensões

Laser + Detector infravermelho - Altas temperaturas e para corpos de provas de pequenas dimensões e de difusividade térmica elevada.

Método Flash – Dispositivos Experimentais

Método Flash – Métodos de Identifcações

Fórmula clássica de PARKER – O valor da difusividade pode ser calculado da metade do tempo t_{1/2} usando a relação

$$\alpha = \frac{0.138}{t_{1/2}} e^2$$

Onde t_{1/2} é o tempo do início do pulso até que a elevação da temperature da face oposta alcance 1/2 (um meio) do valor máximo.

Atualmente se utiliza algum percentual da elevação

$$\alpha = \frac{K_x}{t_x} e^2$$

Onde K_x é a constante correspondente ao percentual x da elevação e t_x é o tempo correspondente do percentual de elevação.

Método Flash – Métodos de Identifcações

Os métodos dos mínimos quadrados não-lineares

- ➢ Gauss-Newton Não Linear
- Levenberg Marquardt

Observação

As incertezas dos parâmetros identificados são calculadas

Método Flash outras grandezas termofísicas

Resistência de Contato - Modelo com 3 parâmetros

$$T = \frac{Q}{C_T} f(h, R_C, t)$$

Espessuras de depósitos ou Revestimento - Modelo com 4 parâmetros

$$T = \frac{Q}{C_T} f(\rho c_d, \kappa_d, h, t)$$

Meios Semitransparentes - Modelo com 5 parametros

$$T = \frac{Q}{\rho ce} f(\rho c, \kappa, R_r, h, t)$$

Outras possibilidades

Difusividade Transversa de materiais

anisotrópicos

Difusividade de líquidos

Controle não destrutivo

o Flash – Estimação da Difusividade Térmica de Meio Semitransparente

Problema direto

condições decontornos

propriedades termofísicas

Determinação

T

fluxo

propriedades rediativas

Problema inverso

T Déterminação flux condições contornos propriedades termofísicas propriedades radiativas

o Flash – Estimação da Difusividade Térmica de Meio Semitransparente

Problema direto

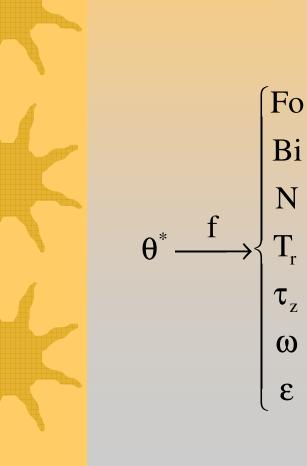
condições decontornos

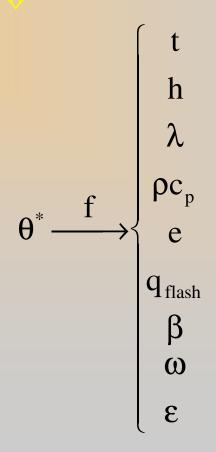
propriedades termofísicas

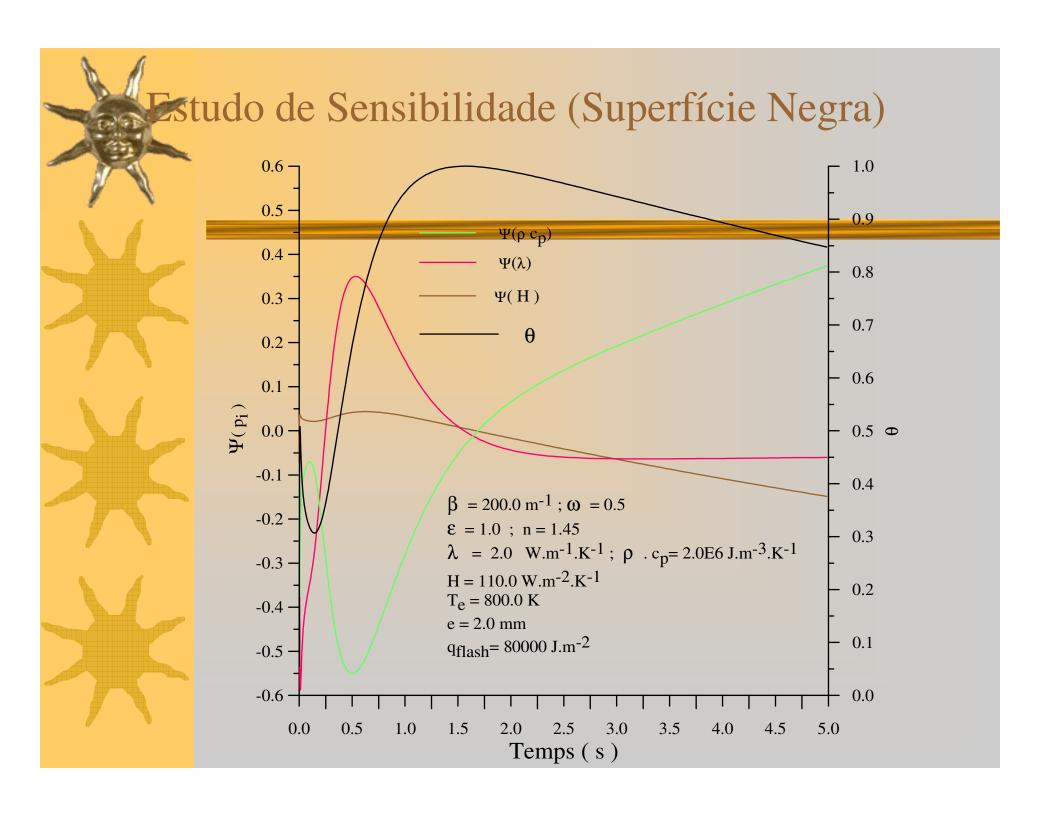
Determinação

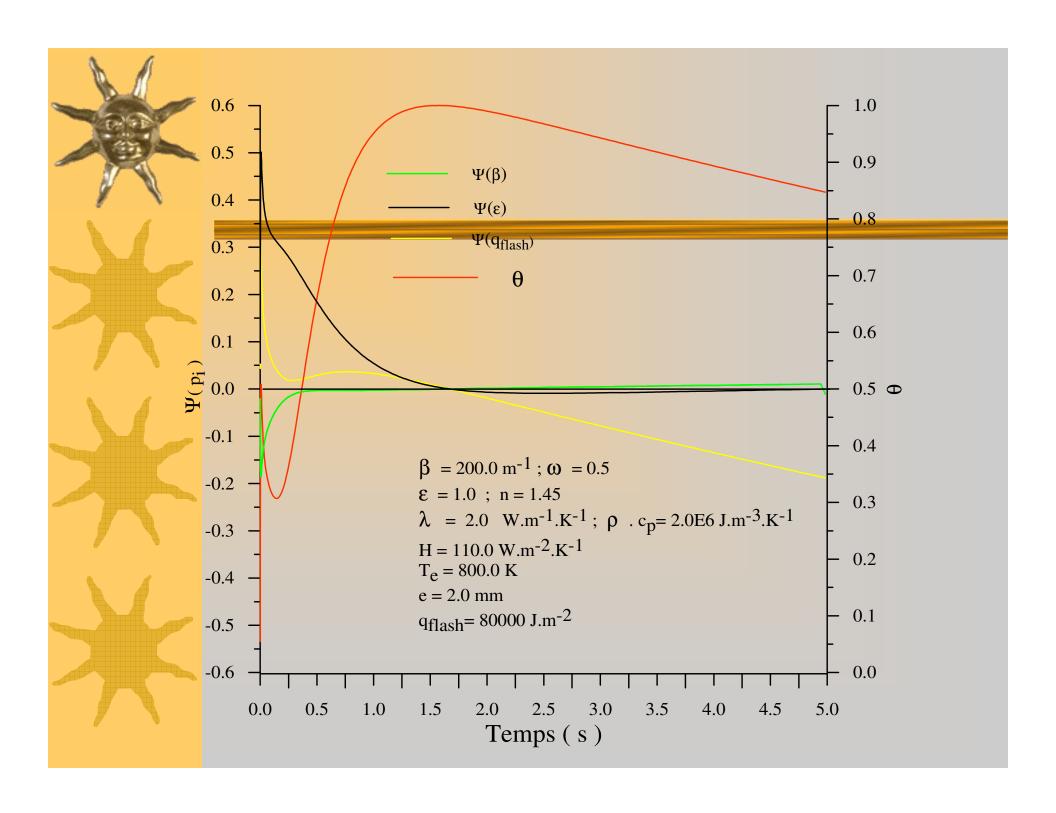
fluxo

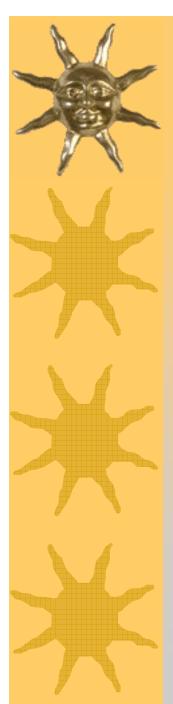
propriedades rediativas


Problema inverso


T Déterminação condições contornos propriedades termofísicas propriedades radiativas




Parametrização


$$a = \frac{\lambda}{\rho c_p}; \quad N = \frac{\beta \lambda}{4n^2 \overline{\sigma} T_e^3}; \quad B_i = \frac{he}{\lambda}; \quad T_r = \frac{q_{flash}}{\rho c_p}; \quad Fo = \frac{at}{e^2}; \quad \tau_z = \beta e$$

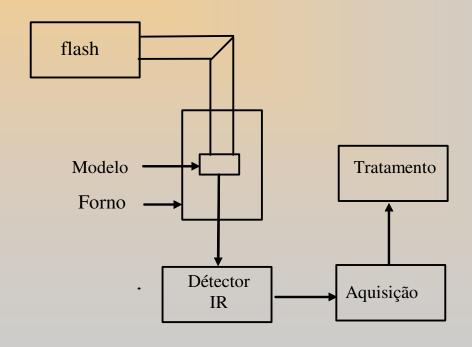
Identificações a partir de dados contaminados

Méthode de Levenberg - Marquardt

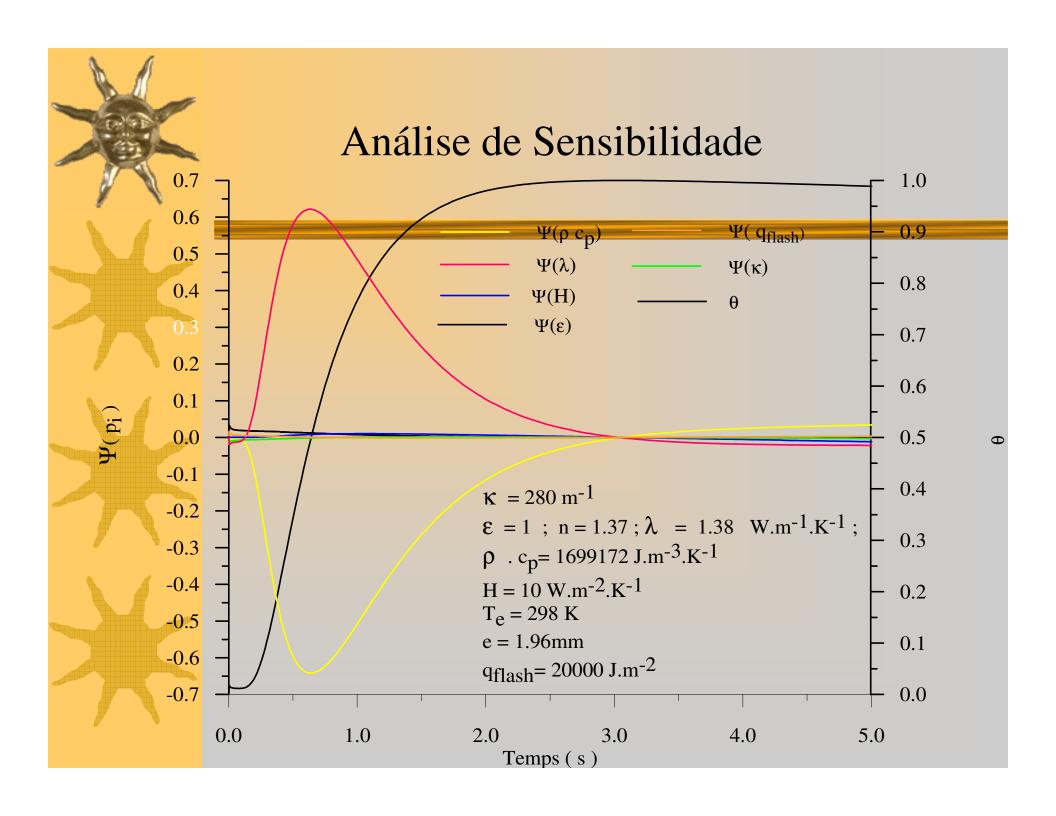
Resutados de identificações simuladas

	Parametros		Valores		
Ī	entrada	saída	Reals	Identificado	
Ī	ε=1, H=110,	λ	$\lambda = 2.0$	$\lambda = 1,95 \pm 0,26.10^{-1}$	
	β=200	ρc_p	$\rho c_p = 2.10^6$	$\rho c_p = 2,054.10^6 \pm 0,24.10^5$	
	$q_{flash}=8. 10^5$		$a = 10^{-6}$	$a = 9,5.10^{-7} \pm 1,4.10^{-8}$	
Ī	β=200	$H, \lambda, \rho c_p$	H = 110.0	H = 117.8 ± 11.4	
	ε=1.0		$\lambda = 2.0$	$\lambda = 1.99 \pm 0.29.10^{-1}$	
	$q_{flash} = 8. \ 10^5$		$\rho c_p = 2.10^6$	$\rho c_p = 2,02.10^6 \pm 0,82.10^5$	
			$a = 10^{-6}$	$a = 0.98.10^{-7} \pm 2.08.10^{-8}$	
Ī	H=110	β , λ , ρc_p	$\beta = 200.0$	$\beta = 196.0 \pm 26.4$	
	ε=1.0		$\lambda = 2.0$	$\lambda = 1.995 \pm 0.196$	
	$q_{flash}=8.10^5$		$\rho c_p = 2.10^6$	$\rho c_p = 1,97.10^6 \pm 0,192.10^6$	
			$a = 10^{-6}$	$a = 1.013.10^{-6} \pm 7,8.10^{-9}$	
Ī	Dados da simulação : $\Delta t = 1.0 - \text{Exp}(-i.2.23^{-5})$: $\delta = 0.05 \text{T}_{max}$				

Dados da simulação : $\Delta t = 1.0 - Exp(-1.2.23^{-3})$;


Intervalo de identificação : $0 \le t \le 0.53$; malha : 21 nodos

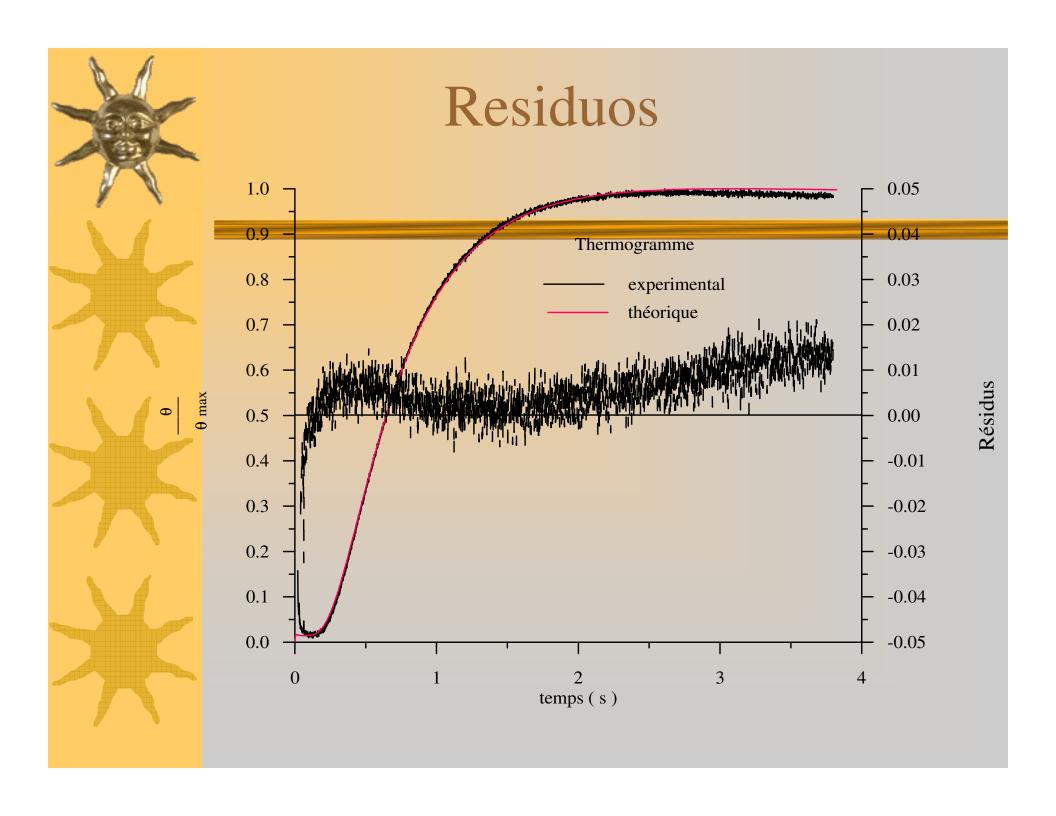
RESULTADOS EXPERIMENTAIS


Thermogramas

CEACESTA⇒VerredeSilice

LEMTA⇒Irtran2

Dispositivo Experimental


Resultados

SUPRASIL ($R=20 \text{ mm}, e = 1.96 \text{ mm}, T_e=298 \text{ K}$).

Parametros (SI)				
Connus	Inconnus	Estimées	Fabricant	
H=10	$\lambda, \rho c_p,$	λ= 1.18	1.38	
q _{flash} =20000		$\rho c_p =$	1,7×10 ⁶	
		$1,47\times10^6$		
ε=1.0		$\alpha = 8.05 \times 10^{-7}$	8,1×10 ⁻⁷	
β=280				

pas du temps : $\Delta t = 0.001$ s maillage : 21 noeuds

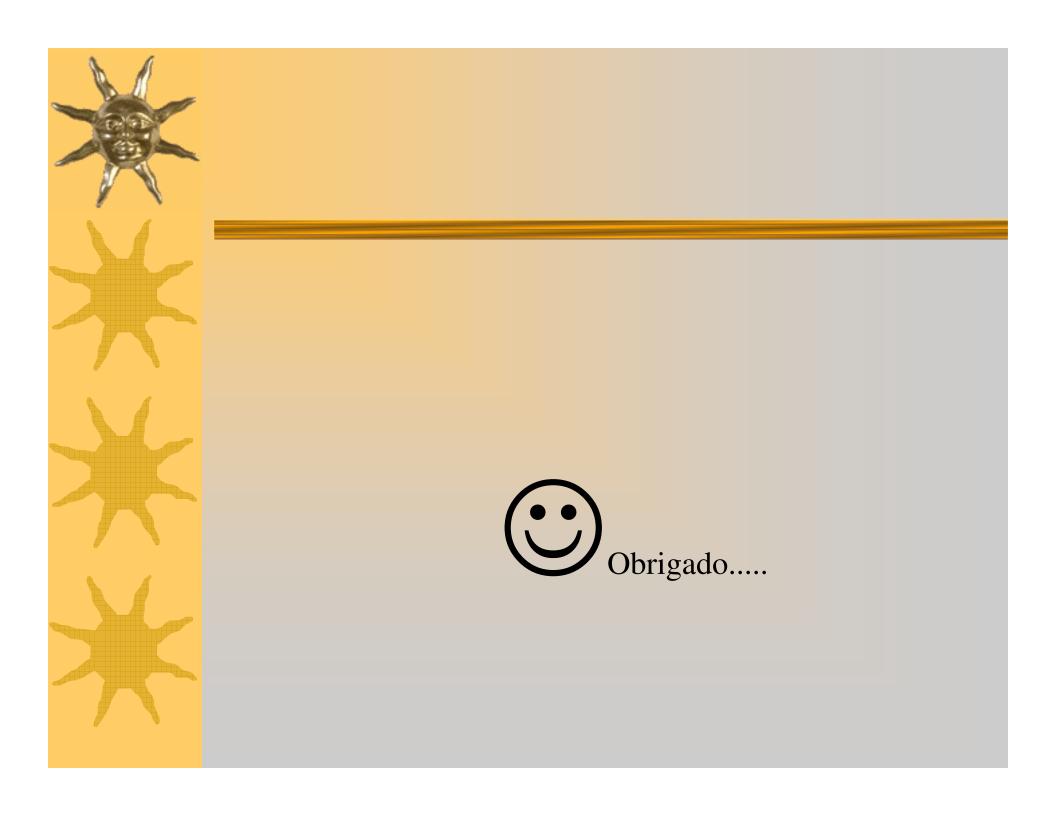
Intervalle d'identification : $0.009 \le t \le 0.6$;

Resultados

SUPRASIL ($R=20 \text{ mm}, e = 1.96 \text{ mm}, T_e=723 \text{ K}$).

	Paramètres (SI)				
Cor	nus	Inconnus	Estimées	Fabricant	
H=	=85	$\lambda, \rho c_p,$	λ= 1.91	$\lambda = 1.93$	
q _{flash} =	20000		$\rho c_p = 2.9 \times 10^6$	$\rho c_p = 2,4 \times 10^6$	
ε=	1.0		$\alpha = 6.54 \times 10^{-7}$	$\alpha = 7,79 \times 10^{-7}$	
β=2	280				

pas du temps : $\Delta t = 0.001 \text{ s}$: maillage : 21 noeuds


Intervalle d'identification : $0.009 \le t \le 0.6$;

Difusividade termica du IRTRAN 2 (ZnS)

ten	npérature (K)	ce travail	LEMTA
	298*	8,46.10 ⁻⁶	8,3.10 ⁻⁶
A	633	3,08.10 ⁻⁶	3,01.10 ⁻⁶
	783	2,1.10 ⁻⁶	2,46.10 ⁻⁶

pas du temps : $\Delta t = 0.001$; * $\Delta t = 0.0005$ s ; 21 noeuds

Intervalle d'identification : $0.001 \le t \le 0.6$

