IDENTIFICATION OF THE THERMOPHYSICAL PROPERTIES OF ORTHOTROPIC SEMI-TRANSPARENT MATERIALS

O. Wellele ${ }^{\mathbf{1}}$, H. R. B. Orlande ${ }^{1}$, N. Ruperti Jr. ${ }^{2}$, M. J. Colaço ${ }^{3}$ and A. Delmas ${ }^{4}$

${ }^{1}$ Department of Mechanical Engineering DEM/PEM - POLI/COPPE
Federal University of Rio de Janeiro, UFRJ
Cid. Universitária, Cx. Postal: 68503
Rio de Janeiro, RJ, 21941-972
Brazil
${ }^{3}$ Department of Mechanical Engineering Military Institute of Engineering - IME Rio de Janeiro, Brazil
${ }^{2}$ Nuclear Energy Commission - CNEN
Rua Gal. Severiano, 90
Botafogo, 22294-900
Rio de Janeiro, Brazil
${ }^{4}$ Le Centre de Thermique de Lyon (CETHIL)
Equipe TIM, UMR 5008
INSA de LYON Bâtiment S. Carnot
20, Avenue Albert Einstein 69621
Villeurbanne Cedex, France

SUMMARY

\author{

1. Introduction
 2. Physical Problem
 3. Mathematical Formulation
 4. Direct Problem and Inverse Problem
 5. Validation of the Solution of the Direct Problem
 6. Inverse Problem
 7. Conclusions
}

1. INTRODUCTION

- Identification of thermophysical properties at high temperatures;
- Flash method for thermal diffusivity;
- Semi-transparent materials;
- Coupled conduction-radiation heat transfer.

2. PHYSICAL PROBLEM

3. MATHEMATICAL FORMULATION

3. MATHEMATICAL FORMULATION

Equation of Radiative Transfer

$\xi \frac{\partial I^{l}}{\partial x}+\eta \frac{\partial I^{l}}{\partial y}+\mu \frac{\partial I^{l}}{\partial z}=-\left(\kappa_{a}+\sigma_{s}\right) I^{l}+S^{l} \quad$ in $0<x<a, 0<y<b, 0<z<c$
where

$$
S^{l}=\kappa_{a} n_{r}^{2} I_{b}(T)+\frac{\sigma_{s}}{4 \pi} \int_{\Omega^{\prime}=4 \pi} I^{l^{\prime}} p\left(\vec{s}^{\prime} \rightarrow \vec{s}\right) d \Omega^{\prime}
$$

Boundary Conditions

$$
\left.\begin{array}{cl}
I(\xi, \eta, \mu)=I(-\xi, \eta, \mu) & \text { at } \Gamma_{1}:\left\{\begin{array}{l}
x=0 \\
0<y<b \\
0<z<c
\end{array}\right.
\end{array}\right\} \begin{array}{ll}
I(-\xi, \eta, \mu)=\varepsilon n_{r}^{2} I_{b}+\frac{1-\varepsilon}{\pi} \int_{\xi^{\prime}>0} I\left(\xi^{\prime}, \eta^{\prime}, \mu^{\prime}\right) \xi^{\prime} d \Omega^{\prime} & \text { at } \Gamma_{2}:\left\{\begin{array}{l}
x=a \\
0<y<b \\
0<z<c
\end{array}\right. \\
I(\xi, \eta, \mu)=I(\xi,-\eta, \mu) & \text { at } \Gamma_{3}:\left\{\begin{array}{l}
0<x<a \\
y=0 \\
0<z<c
\end{array}\right. \\
I(\xi,-\eta, \mu)=\varepsilon n_{r}^{2} I_{b}+\frac{1-\varepsilon}{\pi} \int_{\eta^{\prime}>0} I\left(\xi^{\prime}, \eta^{\prime}, \mu^{\prime}\right) \eta^{\prime} d \Omega^{\prime} & \text { at } \Gamma_{4}: \begin{cases}0<x<a \\
y=b \\
0<z<c\end{cases} \\
I(\xi, \eta, \mu)=\varepsilon n_{r}^{2} I_{b}+\frac{1-\varepsilon}{\pi} \int_{\mu^{\prime}<0} I\left(\xi^{\prime}, \eta^{\prime}, \mu^{\prime}\right) \mu^{\prime} d \Omega^{\prime} & \text { at } \Gamma_{5}: \begin{cases}0<x<a \\
0<y<b \\
z=0\end{cases} \\
I(\xi, \eta,-\mu)=\varepsilon n_{r}^{2} I_{b}+\frac{1-\varepsilon}{\pi} \int_{\mu^{\prime}>0} I\left(\xi^{\prime}, \eta^{\prime}, \mu^{\prime}\right) \mu^{\prime} d \Omega^{\prime} & \text { at } \Gamma_{6}: \begin{cases}0<x<a \\
0<y<b \\
z=c\end{cases}
\end{array}
$$

3. MATHEMATICAL FORMULATION

Energy Conservation Equation

$$
\begin{array}{r}
C \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k_{z} \frac{\partial T}{\partial z}\right)-\nabla \cdot q^{\text {rad }} \\
\text { in } 0<x<a, 0<y<b, 0<z<c, \text { for } t>0
\end{array}
$$

where: $\quad \nabla \cdot q^{r a d}=\frac{\kappa_{a} \tau_{0}}{N_{\mathrm{pl}}}\left[4 \pi n_{r}^{2} I_{b}-\int_{\Omega=4 \pi} I^{l} d \Omega\right]$

Boundary Conditions

$$
\begin{array}{rlrl}
\frac{\partial T}{\partial x}=0 & & \text { at } \Gamma_{1} \text { for } t>0 \\
k_{x} \frac{\partial T}{\partial x}+B i^{r a d} T & =\frac{\varepsilon \tau_{0}}{N_{\mathrm{pl}}}\left[\int_{\xi>0} I^{l} \cdot \xi \cdot d \Omega-n_{r}^{2} \pi I_{b}\right]+B i^{r a d} T_{\infty} & & \text { at } \Gamma_{2} \text { for } t>0 \\
\frac{\partial T}{\partial y}=0 & & \text { at } \Gamma_{3} \text { for } t>0 \\
k_{y} \frac{\partial T}{\partial y}+B i^{r a d} T & =\frac{\varepsilon \tau_{0}}{N_{\mathrm{pl}}}\left[\int_{\eta>0} I^{l} \cdot \eta \cdot d \Omega-n_{r}^{2} \pi I_{b}\right]+B i^{r a d} T_{\infty} & & \text { at } \Gamma_{4} \text { for } t>0 \\
-k_{z} \frac{\partial T}{\partial z}+B i^{r a d} T & =\frac{\varepsilon \tau_{0}}{N_{\mathrm{pl}}}\left[\int_{\mu<0} I^{l} \cdot \mu \cdot d \Omega-n_{r}^{2} \pi I_{b}\right]+B i^{r a d} T_{\infty} & & \text { at } \Gamma_{5} \text { for } t>0 \\
k_{z} \frac{\partial T}{\partial z}+B i^{r a d} T & =\frac{\varepsilon \tau_{0}}{N_{\mathrm{pl}}}\left[\int_{\mu>0} I^{l} \cdot \mu \cdot d \Omega-n_{r}^{2} \pi I_{b}\right] & & \text { at } \Gamma_{6} \text { for } t>0 \\
& +B i^{r a d} T_{\infty}+\varepsilon_{10.6 \mu \mathrm{~m}} q_{l a s e r}(x, y, t) &
\end{array}
$$

Initial Condition

$$
T=0 \quad \text { in } 0<x<a, 0<y<b, 0<z<c \text {, for } t=0
$$

Dimensionless Variables

$$
\begin{aligned}
& k_{x}=\frac{k_{x}^{*}}{k_{\text {ref }}^{*}} \quad, \quad k_{y}=\frac{k_{y}^{*}}{k_{\text {ref }}^{*}} \quad, \quad k_{z}=\frac{k_{z}^{*}}{k_{\text {ref }}^{*}} \\
& x=\frac{x^{*}}{d_{\text {ref }}^{*}} \quad, \quad y=\frac{y^{*}}{d_{\text {ref }}^{*}} \quad, \quad z=\frac{z^{*}}{d_{r e f}^{*}} \\
& a=\frac{a^{*}}{d_{r e f}^{*}} \quad, \quad b=\frac{b^{*}}{d_{r e f}^{*}} \quad, \quad c=\frac{c^{*}}{d_{r e f}^{*}} \\
& C=\frac{C^{*}}{C_{r e f}^{*}} \quad, \quad q=\frac{q^{*}}{q_{r e f}^{*}} \quad, T=\frac{T^{*}-T_{0}^{*}}{\Delta T_{\max }^{*}} \\
& t=\frac{k_{r e f}^{*} t^{*}}{C_{r e f}^{*} d_{r e f}^{* 2}} \quad, \quad \nabla \cdot q^{r a d}=\frac{d_{r e f}^{* 2}}{k_{r e f}^{*} \Delta T_{\max }^{*}} \nabla \cdot q^{r a d^{*}} \\
& B i^{r a d}=\frac{h^{r a d^{*}} d_{r e f}^{*}}{k_{r e f}^{*}}=\frac{\left[h^{*}+4 \varepsilon \sigma T_{\infty}^{* 3}\right] d_{r e f}^{*}}{k_{r e f}^{*}} \\
& I_{\lambda}=\frac{I_{\lambda}^{*}}{4 \sigma T_{0}^{* 4}} \quad, \quad \tau_{0 \lambda}=\beta_{\lambda}^{*} d_{r e f}^{*} \quad, \quad \kappa_{a \lambda}=\kappa_{a \lambda}^{*} d_{r e f}^{*} \\
& \sigma_{s \lambda}=\sigma_{s \lambda}^{*} d_{r e f}^{*}, \quad N_{\mathrm{p} 1 \lambda}=\frac{\beta_{\lambda}^{*} k_{r e f}^{*} \Delta T_{\max }^{*}}{4 \sigma T_{0}^{* 4}}
\end{aligned}
$$

4. DIRECT AND INVERSE PROBLEMS

DIRECT PROBLEM

Known:

- Boundary and initial conditions
- $C, k_{x}, k_{y}, k_{z}, B i^{r a d}, \kappa_{a}$ and σ_{s}

Determine:

- Temperature distribution $T(x, y, z, t)$
- Intensity distribution $I^{l}\left(x, y, z, \xi, \eta^{l}, \mu^{l}, t\right)$

INVERSE PROBLEM

Known:

- Boundary and initial conditions
- Temperature measurements $Y_{m}\left(t_{i}\right)$ taken at locations $\left(x_{m}, y_{m}\right) m=1, \ldots, M$ at the boundary $z=0$ and times t_{i},

$$
i=1, \ldots, I
$$

Estimate:

- C, k_{x}, k_{y}, k_{z} and Birad

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Finite-volumes for the Equation of Radiative Transfer and for the Energy Conservation Equation

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Conduction

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Comparison with analytical solution

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Radiation

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Conduction-Radiation (1D)

 Gray medium

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Conduction-Radiation (1D)

Non-gray medium

$\lambda(\mu \mathrm{m})$	n_{r}	ρ_{λ}	$\beta_{\lambda}\left(\mathrm{m}^{-1}\right)$
$0.5-1.0$	1.5	0.04	10
$1.0-2.7$	1.5	0.04	100
$2.7-4.3$	1.5	0.04	1000
$4.3-10.3$	1.5	0.06	10000
$10.3-50$	1.8	0.15	10000

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Conduction - Cylindrical coordinates

T_{∞}

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Comparison with analytical solution

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Radiation - Cylindrical coordinates

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Conduction-Radiation (1D)

Gray medium - Cylindrical coordinates

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

5. VALIDATION OF THE SOLUTION OF THE DIRECT PROBLEM

Non-gray medium - Cylindrical coordinates

6. INVERSE PROBLEM

The inverse problem of interest is concerned with the estimation of the vector of unknown parameters

$$
\mathbf{P}=\left[k_{x}, k_{y}, k_{z}, C, B i^{r a d}\right]
$$

by using transient temperature measurements taken at the non-heated surface Γ_{5} at $z=0$.

6. INVERSE PROBLEM

For the solution of the present parameter estimation problem, different minimization techniques were used:

- the Levenberg-Marquardt method applied to the minimization of the ordinary least squares norm (OLS),

$$
S_{o L S}(\mathbf{P})=[\mathbf{Y}-\mathbf{T}(\mathbf{P})]^{T}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]
$$

- the Gauss method applied to the minimization of the maximum a posteriori objective function (MAP),

$$
S_{M A P}(\mathbf{P})=[\mathbf{Y}-\mathbf{T}(\mathbf{P})]^{T} \mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]+(\mu-\mathbf{P})^{T} \mathbf{V}^{-1}(\mu-\mathbf{P})
$$

- and the Hybrid method applied to the minimization of the ordinary least squares norm (OLS), which combines deterministic (BFGS method) and evolutionary/stochastic methods (Particle Swarm and Differential Evolution methods).

6. INVERSE PROBLEM

MAXIMUM LIKELIHOOD OBJECTIVE FUNCTION

$$
S_{M L}(\mathbf{P})=[\mathbf{Y}-\mathbf{T}(\mathbf{P})]^{T} \mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]
$$

where $\quad \mathbf{P}=$ vector of unknown parameters
$\mathbf{Y}=$ vector of measured temperatures
$\mathbf{T}(\mathbf{P})=$ vector of estimated temperatures

6. INVERSE PROBLEM

Hypotheses:

- The errors are additive, with zero mean and normally distributed.
- The statistical parameters describing the errors are known.
- There are no errors in the independent variables.
- There is no prior information about \mathbf{P}.

For uncorrelated measurements: $\quad \mathbf{W}=\left[\begin{array}{cccc}1 / \sigma_{1}^{2} & & & 0 \\ & 1 / \sigma_{2}^{2} & & \\ & & \ddots & \\ 0 & & & 1 / \sigma_{I}^{2}\end{array}\right]$

6. INVERSE PROBLEM

THE LEVENBERG-MAROUARDT METHOD

$$
\mathbf{P}^{k+1}=\mathbf{P}^{k}+\left[\mathbf{J}^{T} \mathbf{W} \mathbf{J}+\lambda^{k} \mathbf{\Omega}^{k}\right]^{-1} \mathbf{J}^{T} \mathbf{W}\left[\mathbf{Y}-\mathbf{T}\left(\mathbf{P}^{k}\right)\right]
$$

where $\quad \lambda^{k}$ is the damping parameter and Ω^{k} is a diagonal matrix.

- The Levenberg-Marquardt Method is related to Tikhonov's regularization approach.
- Compromise between steepest-descent method and Gauss' method.
- Simple, powerful and straightforward iterative procedure.
- Capable of treating complex physical situations.
- Easy to program.
- Stable and converges fast.

6. INVERSE PROBLEM

Remark: With the statistical hypotheses described above, the minimization of the least-squares norm yields maximum likelihood estimates, that is, the values estimated for the unknown parameters \mathbf{P} are those most likely to produce the measured data \mathbf{Y}.

Remark: Although very popular and useful in many situations, the minimization of the least-squares norm is a non-Bayesian estimator. A Bayesian estimator is basically concerned with the analysis of the posterior probability density, which is the conditional probability of the parameters \mathbf{P} given the measurements \mathbf{Y}.

6. INVERSE PROBLEM

The statistical inversion approach is based on the following principles:

1. All variables included in the model are modeled as random variables.
2. The randomness describes our degree of information concerning their realizations.
3. The degree of information concerning these values is coded in the probability distributions.
4. The solution of the inverse problem is the posterior probability distribution.

> Jari P. Kaipio and Erkki Somersalo, Computational and Statistical Methods for Inverse Problems, Springer, 2004.

6. INVERSE PROBLEM

BAYES' FORMULA

$$
\pi_{\text {posterior }}(\mathbf{P})=\pi(\mathbf{P} \mid \mathbf{Y})=\frac{\pi_{\text {prior }}(\mathbf{P}) \pi(\mathbf{Y} \mid \mathbf{P})}{\pi(\mathbf{Y})}
$$

Where: $\pi_{\text {posterior }}(\mathbf{P})=$ posterior probability density (conditional probability of the parameters \mathbf{P} given the measurements \mathbf{Y})
$\pi_{\text {prior }}(\mathbf{P})=$ prior density (information about the parameters prior to
the measurements)
$\pi(\mathbf{Y} \mid \mathbf{P})=$ likelihood function (expresses the likelihood of different measurement outcomes \mathbf{Y} with \mathbf{P} given) $\pi(\mathbf{Y})=$ probability density of the measurements (normalizing constant)

$$
\text { posterior } \propto \text { prior } \mathrm{x} \text { likelihood }
$$

6. INVERSE PROBLEM

Maximum a Posteriori Objective Function

$$
S_{M A P}(\mathbf{P})=[\mathbf{Y}-\mathbf{T}(\mathbf{P})]^{T} \mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]+(\mu-\mathbf{P})^{T} \mathbf{V}^{-1}(\boldsymbol{\mu}-\mathbf{P})
$$

Hypotheses: $\left\{\begin{array}{c}\text { • The errors are additive, with zero mean and } \\ \text { normally distributed. } \\ \bullet \text { The statistical parameters describing the errors are } \\ \text { known. } \\ \bullet \text { There are no errors in the independent variables. } \\ \bullet \mathbf{P} \text { is a random vector with known mean } \mu \text { and } \\ \text { known covariance matrix } \mathbf{V} .\end{array}\right.$

6. INVERSE PROBLEM

For uncorrelated measurements: $\mathbf{W}=\left[\begin{array}{cccc}1 / \sigma_{1}^{2} & & & 0 \\ & 1 / \sigma_{2}^{2} & & \\ & & \ddots & \\ 0 & & & 1 / \sigma_{I}^{2}\end{array}\right]$

For the minimization of $S_{M A P}(\mathbf{P}): \quad \frac{\partial S_{M A P}(\mathbf{P})}{\partial P_{1}}=\frac{\partial S_{M A P}(\mathbf{P})}{\partial P_{2}}=\cdots=\frac{\partial S_{M A P}(\mathbf{P})}{\partial P_{N}}=0$

$$
-2 \mathbf{J}^{T} \mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]-2 \mathbf{V}^{-1}[\mu-\mathbf{P}]=0 \quad \text { where } \mathbf{J} \text { is the Sensitivity Matrix. }
$$

6. INVERSE PROBLEM

$$
-2 \mathbf{J}^{T} \mathbf{W}[\mathbf{Y}-\mathbf{T}(\mathbf{P})]-2 \mathbf{V}^{-1}[\mu-\mathbf{P}]=0
$$

Linear Problems: \mathbf{J} does not depend on $\mathbf{P} \square \mathbf{T}(\mathbf{P})=\mathbf{J} \mathbf{P}$

$$
\mathbf{P}=\left[\mathbf{J}^{T} \mathbf{W} \mathbf{J}+\mathbf{V}^{-1}\right]^{-1}\left[\mathbf{J}^{T} \mathbf{W} \mathbf{Y}+\mathbf{V}^{-1} \boldsymbol{\mu}\right]
$$

Nonlinear Problems: $\mathbf{J} \equiv \mathbf{J}(\mathbf{P}) \square \mathbf{T}(\mathbf{P})=\mathbf{T}\left(\mathbf{P}^{k}\right)+\mathbf{J}^{k}\left(\mathbf{P}-\mathbf{P}^{k}\right)$

$$
\mathbf{P}^{k+1}=\mathbf{P}^{k}+\left[\mathbf{J}^{T} \mathbf{W} \mathbf{J}+\mathbf{V}^{-1}\right]^{-1}\left\{\mathbf{J}^{T} \mathbf{W}\left[\mathbf{Y}-\mathbf{T}\left(\mathbf{P}^{k}\right)\right]+\mathbf{V}^{-1}\left(\boldsymbol{\mu}-\mathbf{P}^{k}\right)\right\}
$$

6. INVERSE PROBLEM

Hybrid Method - Minimization of OLS

- DE Method:
- Alternative to the Genetic Algorithm method.
- Proposed in 1995 by Kenneth Price and Rainer Storn from Berkeley.
- The method initializes with a random generated random matrix \mathbf{P} which contains N vector parameters \mathbf{x}
- From the initial population matrix, generations are created until the best generation (optimum) is found.
- The next generation is created as:
where

α, β and γ are three randomly chosen members of the population matrix \mathbf{P}.
F is a weighting function which defines the mutation $(0.5<\mathrm{F}<1)$.
k is the generation counter.
δ_{1} and δ_{2} are delta Dirac functions that defines the crossover.
If $f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{k}\right) \quad \square \mathbf{x}^{\mathrm{k}+1}$ replaces \mathbf{x}^{k} in the population matrix \mathbf{P}
If $f\left(\mathbf{x}^{k+1}\right)>f\left(\mathbf{x}^{k}\right) \quad \square \mathbf{x}^{k}$ is kept in the population matrix \mathbf{P} and \mathbf{x}^{k+1} is discarded
- The crossover is obtained as: $\quad \mathbf{x}_{i}^{k+1}=\delta_{1} \mathbf{x}_{i}^{k}+\delta_{2}[\boldsymbol{\alpha}+F(\boldsymbol{\beta}-\gamma)]$

$$
\delta_{1}=\square \begin{aligned}
& 0, \text { if } \mathrm{R}<\mathrm{CR} \\
& 1, \text { if } \mathrm{R}>\mathrm{CR}
\end{aligned} \quad \delta_{2}=\square \begin{aligned}
& 1, \text { if } \mathrm{R}<\mathrm{CR} \\
& 0, \text { if } \mathrm{R}>\mathrm{CR}
\end{aligned}
$$

- R is a random number with uniform distribution between 0 and 1
- CR is the crossover factor $(0.5<\mathrm{CR}<1)$
- PS (Particle Swarm) method:
- Created in 1995 by an Electric Engineer (Russel Eberhart) and a Social-Psychologist (James Kennedy) as an alternative to Genetic Algorithm.
- Based on the social behavior of various species (including humans).
- Balances the individuality and sociability of individuals in order to find a optimum.
\widehat{V} Individuality
\int Sociability
\Uparrow Chances to find alternatives places
$\sqrt{\text { Convergence }}$
\Uparrow Learning process among the individuals
Chances to find alternatives places. Individuals can find a local minima
- PS method:
- Update process
where
\mathbf{x}_{i} is i-th individual of the vector of parameters
$\mathbf{r}_{1 \mathrm{i}}$ and $\mathbf{r}_{2 \mathrm{i}}$ are are random numbers with uniform distribution between 0 and 1
\mathbf{p}_{i} is the best value found for the vector \mathbf{x}_{i}
\mathbf{p}_{g} is the vest value found for the entire population

$$
0<\alpha<1 ; 1<\beta<2
$$

6. INVERSE PROBLEM

Find the region for the global minimum with a fast solution by using the Hybrid Method.

Find the global minimum with the complete model, but with a fast gradient.

6. INVERSE PROBLEM

Simulated measurements ($\sigma=0.8 \mathrm{~K}$)

$$
\begin{aligned}
C^{*} & =2.5 \times 10^{6} \mathrm{Jm}^{-3} \mathrm{~K}^{-1} \\
k_{x}^{*} & =5 \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \\
k_{y}^{*} & =5 \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \\
k_{z}^{*} & =5 \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \\
h_{r a d}^{*} & =1372 \mathrm{Wm}^{-2} \mathrm{~K}^{-1} . \\
\kappa_{a}^{*} & =10 \mathrm{~m}^{-1} \\
\sigma_{s}^{*} & =10^{4} \mathrm{~m}^{-1}
\end{aligned}
$$

6. INVERSE PROBLEM

The sample was assumed to be a parallelepiped with dimensions $2 a^{*}=2 b^{*}=0.01 \mathrm{~m}$ and $c^{*}=0.001 \mathrm{~m}$, heated by a laser with a power of 23 W and a Gaussian distribution. For the heat flux imposed by the laser, 99% of its power was assumed to be delivered within a circle with radius of 2 mm centered at the sample. The sample is assumed to be initially at the uniform temperature of 1800 K , which is the same temperature of the surrounding environment.

6. INVERSE PROBLEM

Table I: Estimation techniques

Technique	Objective Function	Method	Model for the Direct Problem	Model for the Gradient
1	Least-squares	Levenberg-Marquardt	Complete	Surrogate
2	Least-squares	Levenberg-Marquardt	Complete	Complete
3	Maximum a Posteriori	Gauss	Complete	Surrogate
4	Maximum a Posteriori	Gauss	Complete	Complete
5	Least-squares	$1^{\text {st }}$ step: Hybrid $2^{\text {nd }}$ step: LevenbergMarquardt	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Complete	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Surrogate
6	Least-squares	```1 st step: Hybrid 2nd}\mathrm{ step: Levenberg- Marquardt```	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Complete	$1^{\text {st }}$ step: Surrogate $\underline{2}^{\text {nd }}$ step: Complete
7	$1^{\text {st }} \text { step: }$ Least-squares $2^{\text {nd }}$ step:MAP	$1^{\text {st }}$ step: Hybrid $2^{\text {nd }}$ step: Gauss	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Complete	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Surrogate
8	$\begin{gathered} \frac{1^{\text {st }} \text { step: }}{\text { Least-squares }} \\ \underline{2}^{\text {nd }} \text { step:MAP } \end{gathered}$	$1^{\text {st }}$ step: Hybrid $2^{\text {nd }}$ step: Gauss	$1^{\text {st }}$ step: Surrogate $2^{\text {nd }}$ step: Complete	$1^{\text {st }}$ step: Surrogate $\underline{2}^{\text {nd }}$ step: Complete

Table 2: Results obtained with an initial guess close to the exact parameters
$\left(C^{*_{0}}=2.8 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3} . \mathrm{K}, k_{x}^{*_{0}}=k_{y}^{*_{0}}=k_{z}^{*_{0}}=8 \mathrm{~W} / \mathrm{m} . \mathrm{K}, h^{r 2 d^{* 0}}=800 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}\right)$

			Estimates				
Technique	Number of Itcrations	CPU Time	$\begin{aligned} & \mathrm{C}^{*} \times 10^{6} \\ & \mathrm{Jm}^{-3} \mathrm{~K}^{-1} \end{aligned}$	$\begin{gathered} k_{x}^{x} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} k_{y}^{*} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} k_{z}^{*} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} h^{\mathrm{mad}^{*}} \\ \mathrm{Wm}^{-\ddot{ } \mathrm{K}^{-}} \end{gathered}$
1	16	5h35m18s	2.51 ± 0.03	$4.99=0.07$	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
2	16	6h14m04s	2.51 ± 0.03	$5.00=0.07$	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
3	13	4h33m16s	2.51 ± 0.03	$5.00=0.07$	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
4	6	2 h 36 m 5 s	2.51 ± 0.03	$5.00=0.07$	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
5	$\begin{aligned} & 50 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~h} 17 \mathrm{~m} 26 \mathrm{~s} \\ & 5 \mathrm{~h} 50 \mathrm{~m} 55 \mathrm{~s} \end{aligned}$	$\begin{gathered} 2.19 \\ 2.51 \pm 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \\ 4.99=0.07 \\ \hline \end{gathered}$	$\begin{gathered} 5.80 \\ 5.01 \pm 0.07 \end{gathered}$	$\begin{gathered} 3.6 \\ 5.0 \pm 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 1246 \\ 1373 \pm 5 \end{gathered}$
6	$\begin{aligned} & 50 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{~h} 17 \mathrm{~m} 26 \mathrm{~s} \\ & 6 \mathrm{~h} 33 \mathrm{~m} 02 \mathrm{~s} \end{aligned}$	$\begin{gathered} 2.19 \\ 2.51 \pm 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \\ 5.00=0.07 \\ \hline \end{gathered}$	$\begin{gathered} 5.80 \\ 5.01 \pm 0.07 \\ \hline \end{gathered}$	$\begin{gathered} 3.6 \\ 5.0 \pm 0.2 \end{gathered}$	$\begin{gathered} 1246 \\ 1373 \pm 5 \\ \hline \end{gathered}$
7	$\begin{aligned} & 50 \\ & 11 \end{aligned}$	1h17m26s 4h09m59s	$\begin{gathered} 2.19 \\ 2.51 \pm 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \\ 5.00=0.07 \\ \hline \end{gathered}$	$\begin{gathered} 5.80 \\ 5.01 \pm 0.07 \\ \hline \end{gathered}$	$\begin{gathered} 3.6 \\ 5.0 \pm 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 1246 \\ 1373 \pm 5 \end{gathered}$
8	$\begin{gathered} 50 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \mathrm{~h} 17 \mathrm{~m} 26 \mathrm{~s} \\ & 1 \mathrm{~h} 59 \mathrm{~m} 11 \mathrm{~s} \end{aligned}$	$\begin{gathered} 2.19 \\ 2.51+0.03 \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \\ 5.00-0.07 \\ \hline \end{gathered}$	$\begin{gathered} 5.80 \\ 5.01+0.07 \\ \hline \end{gathered}$	$\begin{gathered} 3.6 \\ 5.0+0.2 \end{gathered}$	$\begin{gathered} 1246 \\ 1373+5 \\ \hline \end{gathered}$

Table 3: Results obtained with an initial guess far from the exact parameters
$\left(C^{* 3}=0.1 \times 10^{6} \mathrm{~J} / \mathrm{m}^{2} . \mathrm{K}, k_{x}^{*_{0}}=k_{y}^{*_{0} 0}=k_{\mathrm{r}}^{*_{\mathrm{C}}}=50 \mathrm{~W} / \mathrm{m} . \mathrm{K}, h^{r a \alpha^{*} 0}=5 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}\right)$

			Estimates				
Technique	Number of Iterations	CPU Time	$\begin{aligned} & \mathrm{C}^{*} \times 10^{6} \\ & \mathrm{Jm}^{-3} \mathrm{~K}^{-1} \end{aligned}$	$\begin{gathered} k_{x}^{*} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} k_{y}^{*} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} k_{z}^{*} \\ \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\begin{gathered} h^{h^{\text {dad }}} \\ \mathrm{Wm}^{-2} \mathrm{~K}^{-1} \end{gathered}$
1	NC	-	-	-	-	-	-
2	NC	-	-	-	-	-	-
3	NC	-		-		-	
4	NC	-		-		-	
5	50	1h19m45s	2.04	5.22	5.26	2.9	1224
5	21	7h44m03s	2.51 ± 0.03	4.99 ± 0.07	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
6	50	1 h 19 m 45 s	2.04	5.22	5.26	2.9	1224
	16	6 h 32 m 44 s	2.51 ± 0.03	5.00 ± 0.07	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5
7	50	$1 \mathrm{~h} 19 \mathrm{m45}$ s	2.04	5.22	5.26	2.9	1224
	50	3 h 54 m 49 s	2.51 ± 0.03	5.00 ± 0.07	5.01 ± 0.07	$\frac{50 \pm 0.2}{29}$	$\frac{1373 \pm 5}{1224}$
8	5	$2 \mathrm{~h} 22 \mathrm{~m} 53 \mathrm{~s}$	2.51 ± 0.03	5.00 ± 0.07	5.01 ± 0.07	5.0 ± 0.2	1373 ± 5

7. CONCLUSIONS

- The use of a surrogate model for the gradient did not affect the accuracy of the estimated parameters and may cause an increase on the number of iterations and CPU time, due to the loss of computational accuracy.
- The two-step approach was necessary to reach convergence if initial guesses far from the exact parameters were used in the inverse analysis.

