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1. INTRODUCTION

• Identification of thermophysical properties at high temperatures;
• Flash method for thermal diffusivity;
• Semi-transparent materials;
• Coupled conduction-radiation heat transfer.
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2. PHYSICAL PROBLEM
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3. MATHEMATICAL FORMULATION
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3. MATHEMATICAL FORMULATION

Equation of Radiative Transfer
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Boundary Conditions
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3. MATHEMATICAL FORMULATION

Energy Conservation  Equation

where:
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Dimensionless Variables
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DIRECT PROBLEM

Known:
• Boundary and initial conditions

• C, kx , ky , kz , Birad, κa and σs

Determine:
• Temperature distribution T(x,y,z,t)

• Intensity distribution Il(x,y,z,ξl,ηl,µl,t)

INVERSE PROBLEM

Known:
• Boundary and initial conditions

• Temperature measurements Ym(ti)

taken at locations (xm , ym) m=1,…,M 

at the boundary z = 0 and times ti, 

i=1,…,I

Estimate:
• C, kx , ky , kz and Birad

4. DIRECT AND INVERSE PROBLEMS



5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Finite-volumes for the Equation of Radiative 
Transfer and for the Energy Conservation Equation
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Conduction
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Comparison with analytical solution
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Radiation
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Conduction-Radiation (1D)
Gray medium
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Conduction-Radiation (1D)
Non-gray medium

λ  (µm) rn  λρ  -1(m )λβ  
0.5-1.0 1.5 0.04 10 
1.0-2.7 1.5 0.04 100 
2.7-4.3 1.5 0.04 1000 
4.3-10.3 1.5 0.06 10000 
10.3-50 1.8 0.15 10000 



5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Conduction – Cylindrical coordinates
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Comparison with analytical solution
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Radiation – Cylindrical coordinates
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Conduction-Radiation (1D)
Gray medium – Cylindrical coordinates
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM
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5. VALIDATION OF THE SOLUTION 
OF THE DIRECT PROBLEM

Non-gray medium – Cylindrical coordinates
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NA FORMA MATRICIAL
6. INVERSE PROBLEM

The inverse problem of interest is concerned with the estimation of the vector of 
unknown parameters 

by using transient temperature measurements taken at the non-heated surface Γ5
at z = 0. 
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NA FORMA MATRICIAL
6. INVERSE PROBLEM

For the solution of the present parameter estimation problem, different 
minimization techniques were used:

• the Levenberg-Marquardt method applied to the minimization of 
the ordinary least squares norm (OLS),

• the Gauss method applied to the minimization of the maximum a 
posteriori objective function (MAP),

• and the Hybrid method applied to the minimization of the 
ordinary least squares norm (OLS), which combines deterministic 
(BFGS method) and evolutionary/stochastic methods (Particle 
Swarm and Differential Evolution methods).

( ) [ ( )] [ ( )]T
OLSS = − −P Y T P Y T P

[ ] [ ] 1( ) ( ) ( ) ( ) ( )T T
MAPS −= − − + − −P Y T P W Y T P P V Pµ µµ µµ µµ µ



NA FORMA MATRICIAL

[ ] [ ])()()( PTYWPTYP −−= T
MLS

MAXIMUM LIKELIHOOD OBJECTIVE FUNCTION

where P = vector of unknown parameters
Y = vector of measured temperatures
T(P) = vector of estimated temperatures

6. INVERSE PROBLEM
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For uncorrelated measurements:
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Hypotheses:

• The errors are additive, with zero mean and 
normally distributed.

• The statistical parameters describing the errors are 
known.

• There are no errors in the independent variables.
• There is no prior information about P.

6. INVERSE PROBLEM



NA FORMA MATRICIAL

where λk is the damping parameter and ΩΩΩΩk is a diagonal matrix.

• The Levenberg-Marquardt Method is related to Tikhonov’s 
regularization approach.

• Compromise between steepest-descent method and Gauss' method.
• Simple, powerful and straightforward iterative procedure.

• Capable of treating complex physical situations.

• Easy to program.
• Stable and converges fast.

)]([][ 11 kTkkTkk PTYWJWJJPP −++= −+ ΩΩΩΩλ

THE LEVENBERG-MARQUARDT METHOD

6. INVERSE PROBLEM
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Remark: With the statistical hypotheses described above, the 
minimization of the least-squares norm yields maximum 
likelihood estimates, that is, the values estimated for the 
unknown parameters P are those most likely to produce the 
measured data Y. 

Remark: Although very popular and useful in many situations, 
the minimization of the least-squares norm is a non-Bayesian 
estimator. A Bayesian estimator is basically concerned with the 
analysis of the posterior probability density, which is the 
conditional probability of the parameters P given the 
measurements Y.

6. INVERSE PROBLEM
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The statistical inversion approach is based on the following principles:
1. All variables included in the model are modeled as random variables.
2. The randomness describes our degree of information concerning their
realizations.
3. The degree of information concerning these values is coded in the probability 
distributions.
4. The solution of the inverse problem is the posterior probability distribution.

Jari P. Kaipio and Erkki Somersalo, Computational and Statistical Methods 
for Inverse Problems, Springer, 2004.

6. INVERSE PROBLEM
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( ) ( )
( ) ( )

( )
prior

posterior

π π
π π

π
= =

P Y P
P P Y

Y

BAYES’ FORMULA

Where: πposterior(P) = posterior probability density (conditional probability of 
the parameters P given the measurements Y)
πprior(P) = prior density (information about the parameters prior to

the measurements)
π (Y|P)  = likelihood function (expresses the likelihood of different 

measurement outcomes Y with P given)
π (Y)  = probability density of the measurements (normalizing constant)

xposterior prior likelihood∝

6. INVERSE PROBLEM
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MAPS

Maximum a Posteriori Objective Function

Hypotheses:

• The errors are additive, with zero mean and 
normally distributed.

• The statistical parameters describing the errors are 
known.

• There are no errors in the independent variables.
• P is a random vector with known mean µµµµ and 

known covariance matrix V.
• P is distributed normally and is independent of Y.

6. INVERSE PROBLEM
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6. INVERSE PROBLEM



Linear Problems: J does not depend on P PJPT =)(

Nonlinear Problems:
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6. INVERSE PROBLEM
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Particle Swarm 
using Boltzmann 

probability 

Differential 
Evolution 

m% of the particles found a minima 

Improvement of the objective 
function 

BFGS 
Method 

  No-improvement of 
the objective function 

Hybrid Method – Minimization of OLS

6. INVERSE PROBLEM
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• DE Method:

– Alternative to the Genetic Algorithm method.

– Proposed in 1995 by Kenneth Price and Rainer Storn from Berkeley.

• The method initializes with a random generated random matrix P which 

contains N vector parameters x

• From the initial population matrix, generations are created until the best 

generation (optimum) is found.
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• The next generation is created as:

( )[ ]���xx −++=+ Fk
i

k
i 21

1 δδ

If f(xk+1) < f(xk) xk+1 replaces xk in the population matrix P

If f(xk+1) > f(xk) xk is kept in the population matrix P and xk+1 is 

discarded

where

αααα, ββββ and γγγγ are three randomly chosen members of the population matrix P.

F is a weighting function which defines the mutation (0.5 < F < 1).

k is the generation counter.

δ1 and δ2 are delta Dirac functions that defines the crossover.

11stst parentparent 22ndnd parentparent
Mutation Mutation 
includedincluded



5/3/2007

• The crossover is obtained as:

δ1 =
0, if R < CR

1, if R > CR

• R is a random number with uniform distribution between 0 and 1

• CR is the crossover factor (0.5 < CR < 1)

δ2 =
1, if R < CR

0, if R > CR

( )[ ]���xx −++=+ Fk
i

k
i 21

1 δδ
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• PS (Particle Swarm) method:

– Created in 1995 by an Electric Engineer (Russel Eberhart) and a  

Social-Psychologist (James Kennedy) as an alternative to Genetic 

Algorithm.

– Based on the social behavior of various species (including humans).

– Balances the individuality and sociability of individuals in order to find 

a optimum.

Individuality Chances to find alternatives places

Convergence

Sociability Learning process among the individuals

Chances to find alternatives places. Individuals can find a 

local minima
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• PS method:

• Update process
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IndividualityIndividuality SociabilitySociability
where

xi is i-th individual of the vector of parameters

r1i and r2i are are random numbers with uniform distribution between 0 and 1

pi is the best value found for the vector xi

pg is the vest value found for the entire population

0 < α < 1;  1 < β < 2
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Find the region for the global 
minimum with a fast solution 
by using the Hybrid Method.

1st STEP:ORDINARY LEAST-SQUARES 
Reduced model (conduction and 

radiation decoupled)

INITIAL GUESS

2nd STEP:MAXIMUM A POSTERIORI
• Coupled conduction-radiation for the 
computation of the system response

• Reduced model 
(conduction and radiation decoupled) 

for the computation of the gradient

SOLUTION

Find the global minimum 
with the complete model, 
but with a fast gradient.

Find the region for the global 
minimum with a fast solution 
by using the Hybrid Method.

1st STEP:
• Surrogate model 

• Surrogate gradient

INITIAL GUESS

2nd STEP:
• Coupled conduction-radiation for the 
computation of the system response

• Surrogate model 
for the computation of the gradient

SOLUTION

Find the global minimum 
with the complete model, 
but with a fast gradient.

Find the region for the global 
minimum with a fast solution 
by using the Hybrid Method.

1st STEP:ORDINARY LEAST-SQUARES 
Reduced model (conduction and 

radiation decoupled)

INITIAL GUESS

2nd STEP:MAXIMUM A POSTERIORI
• Coupled conduction-radiation for the 
computation of the system response

• Reduced model 
(conduction and radiation decoupled) 

for the computation of the gradient

SOLUTION

Find the global minimum 
with the complete model, 
but with a fast gradient.

Find the region for the global 
minimum with a fast solution 
by using the Hybrid Method.

1st STEP:
• Surrogate model 

• Surrogate gradient

INITIAL GUESS

2nd STEP:
• Coupled conduction-radiation for the 
computation of the system response

• Surrogate model 
for the computation of the gradient

SOLUTION

Find the global minimum 
with the complete model, 
but with a fast gradient.
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Simulated measurements (σ = 0.8K) 
C* = 2.5x106 Jm-3K-1

= 5 Wm-1K-1

= 5 Wm-1K-1

= 5 Wm-1K-1

= 1372 Wm-2K-1 .

*
xk
*
yk
*
zk
*
radh

= 10 m-1

= 104 m-1

*
aκ
*
sσ
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The sample was assumed to be a parallelepiped with 
dimensions 2a* = 2b* = 0.01 m and c*=0.001 m, heated by 
a laser with a power of 23 W and a Gaussian distribution. For 
the heat flux imposed by the laser, 99% of its power was 
assumed to be delivered within a circle with radius of 2 mm 
centered at the sample. The sample is assumed to be initially 
at the uniform temperature of 1800K, which is the same 
temperature of the surrounding environment.
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NA FORMA MATRICIAL

* * * *( , , )laserq x y t

A
B

C

* * * *( , , )laserq x y t

A
B

C
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7. CONCLUSIONS

• The use of a surrogate model for the gradient did not affect the 
accuracy of the estimated parameters and may cause an increase 
on the number of iterations and CPU time, due to the loss of 
computational accuracy.
• The two-step approach was necessary to reach convergence if 
initial guesses far from the exact parameters were used in the 
inverse analysis.


