

Liberté • Égalité • Fraternité RÉPUBLIQUE FRANÇAISE Ambassade de France au Chili Délégation Régionale de Coopération pour le Cône Sud et le Brésil

Universidad de Santiago de Chile Dpto Ingeniería Mecánica

The Thermal Quadrupole Formalism.

Application to the estimation of thermophysical properties

by random heating

Olivier Fudym

June 7-10, 2005, Rio de Janeiro

PROJETO DE COOPERAÇÃO SUL-AMERICANA EM IDENTIFICAÇÃO DE PROPRIEDADES FÍSICAS EM TRANSFERÊNCIA DE CALOR E MASSA Programa CNPq/PROSUL Escola Sul-Americana em Identificação de Propriedades Físicas em Transferência de Calor e Massa – PROPFIS

LGPSD UMR CNRS 2392 = Chemical Engineering Laboratory for Finely Divided Solids

- South West of France
- Ministère de l'Economie, des Finances, et de l'Industrie
- Civil Engineers (Major in Chemical Engineering)

The Thermal Quadrupole Formalism. Application to the estimation of thermophysical properties by random heating

- 1. The Thermal Quadrupole Formalism
- 2. Estimation of thermophysical properties by random heating
- 3. Thermal diffusivity mapping from spatial random heating
- 4. Conclusion

Motivation

Many Thermal Engineering problems do not require the knowledge of temperature and heat flux in the whole domain

Heat transfer parameters measurement

Looking for analytical relationships between temperature and heat flux at some given locations

Carslaw & Jaeger	1959	Laplace space, quadrupole network
A. Degiovanni et al.	1988	LEMTA, Nancy, France
J.C. Batsale et al.	1994	2D, 3DIntegral transforms
D. Maillet et al.	2000	Thermal Quadrupole Book

A. Degiovanni

Conduction dans un «mur » multicouche avec sources : extension de la notion de quadripôle, Int.J.Heat.Mass.Transfer. Vol 3, 553 - 557, 1988

D. Maillet, S. André, J.C. Batsale, A. Degiovanni, C. Moyne Thermal quadrupoles : Solving the heat equation through integral transforms Wiley, London, 2000

Substitute the input/output boundary conditions : T_1 ; Φ_1 and T_2 ; Φ_2

... in order to eliminate the coefficients G_1 and G_2

$$\begin{bmatrix} \theta_{e}(s) \\ \Phi_{e}(s) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \theta_{s}(s) \\ \Phi_{s}(s) \end{bmatrix} \qquad \begin{bmatrix} A = \cosh(Ke) & B = \frac{\sinh(Ke)}{kKS} \\ C = kKS \sinh(Ke) & D = \cosh(Ke) \end{bmatrix}$$
OR
$$\begin{bmatrix} \theta_{e}(s) \\ \varphi_{e}(s) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \theta_{s}(s) \\ \varphi_{s}(s) \end{bmatrix} \qquad \begin{bmatrix} A = \cosh(Ke) & B = \frac{\sinh(Ke)}{kK} \\ C = kK \sinh(Ke) & D = \cosh(Ke) \end{bmatrix}$$
thermal conductivity
thermal diffusivity
$$\Phi_{e} \qquad A \qquad B \qquad \Phi_{s} \qquad \text{Intrinsic} \\ \text{linear relationship} \\ \text{between} \\ \text{input / output variables} \end{cases}$$
7

$$\begin{bmatrix} \theta_e(s) \\ \Phi_e(s) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \theta_s(s) \\ \Phi_s(s) \end{bmatrix}$$

Two boundary conditions are known

Two remaining equations given by the quadrupole

9

Time-dependent periodic case

Multilayer System

...As well as the interface vectors :

$$\begin{bmatrix} \theta_i \\ \phi_i \end{bmatrix} = \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} \dots \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} \begin{bmatrix} \theta_s \\ \phi_s \end{bmatrix}$$

11

Semi-infinite medium

 $\begin{bmatrix} \theta_e(s) \\ \Phi_e(s) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \theta_s(s) \\ \Phi_s(s) \end{bmatrix} \qquad \longrightarrow \qquad e \to \infty$

 $\theta_e = Z \Phi_e$

12

Interface conditions

Thermal contact resistance

$$T_1 - T_2 = R_c \phi$$

$$\begin{bmatrix} \theta_1 \\ \Phi_1 \end{bmatrix} = \begin{bmatrix} 1 & R_c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_2 \\ \Phi_2 \end{bmatrix}$$

Newton B.C.

$$\phi = hS(T_I - T_\infty)$$

$$\begin{bmatrix} \theta_1 \\ \Phi_1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{hS} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_{\infty} \\ \Phi_{\infty} \end{bmatrix}$$

Heat Capacity condition

$$C\frac{dT}{dt} = \phi_1 - \phi_2$$
$$\begin{bmatrix} \theta_1 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Cs & 1 \end{bmatrix} \begin{bmatrix} \theta_2 \\ \phi_2 \end{bmatrix}$$

Internal heat sources and initial temperature imbalance

$$\frac{d}{dt}\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial z^2} + \frac{g(z,t)}{k} \quad \text{with} \quad T(z) = T_0(z) \quad \text{for } t = 0$$

$$\int_{-\infty}^{\infty} \frac{d^2\theta}{dz^2} + \frac{G(z,s)}{k} + \frac{T_0(z)}{a} - \frac{s}{a}\theta = 0$$

$$\theta(z,s) = G_1 \cosh(Kz) + G_2 \sinh(Kz) + \theta_{part}$$

$$\left[\begin{pmatrix} \theta_e(s) \\ \Phi_e(s) \end{pmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \theta_s(s) \\ \Phi_s(s) \end{bmatrix} - \begin{bmatrix} X \\ Y \end{bmatrix} \right]$$

14

Cylindrical coordinate system

$$\frac{1}{a}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$$
$$\int_{-\infty}^{\infty}$$
$$\frac{d^{2}\theta}{dr^{2}} + \frac{1}{r}\frac{d\theta}{dr} - \frac{s}{a}\theta = 0$$
$$\theta(z,s) = G_{I}I_{0}(Kr) + G_{2}K_{0}(Kr)$$
Bessel functions
$$\phi = -kS\frac{d\theta}{dr}$$
with $S = 2\pi r I$

Two or three dimensional cases

Extension de la notion de quadripôle thermique à l'aide de transformations intégrales : calcul du transfert thermique au travers d'un défaut plan bidimensionnel, Int.J.Heat.Mass.Transfer. Vol 37, 111 - 127, 1994

Multilayer example : super insulating materials characterization

Multilayer example : super insulating materials characterization

Extension for thermal charaterization of liquids in Couette flow

Transfer of technology :

« Capthermic » start-up

Compressible material Main characteristics of the Quadrupole formalism

Analytical relationships in the transformed space

Asymptotic expansions Simplified models

Direct local relationships between measurement points

No time discretization

No grid = it is not necessary to compute the solution in the whole domain

No accumulation of errors / t

Multilayer systems

— Mat

Exclusively limited to linear systems

Matix multiplication

Semi-analycal extension for heterogeneous media

Semi-analycal extension for heterogeneous media

1. Diagonalization

$$\mathbf{M}_{s}(\mathbf{M}_{//} + \mathbf{G}_{s}) = \mathbf{P} \mathbf{\Omega} \mathbf{P}^{-1}$$

$$\mathbf{V} = \mathbf{P}^{-l} \overline{\mathbf{T}}$$

2. Resolution in the eigenvalues space

$$\mathbf{\Omega}\mathbf{V} - \frac{d^2\mathbf{V}}{dx^2} = \mathbf{0}$$

$$\mathbf{J}_{\mathbf{V}} = -dz \frac{d\mathbf{V}}{dx}$$

$$\mathbf{A}_{\mathbf{V}} = \mathbf{D}_{\mathbf{V}} = \cosh(\sqrt{\mathbf{\Omega}}L)$$
$$\mathbf{B}_{\mathbf{V}} = \sinh(\sqrt{\mathbf{\Omega}}L)(\sqrt{\mathbf{\Omega}}dz)^{-1}$$
$$\mathbf{C}_{\mathbf{V}} = (dz\sqrt{\mathbf{\Omega}})\sinh(\sqrt{\mathbf{\Omega}}L)$$

3. Return to temperature / flux basis

$$\mathbf{A} = \mathbf{P}\mathbf{A}_{\mathbf{V}}\mathbf{P}^{-1}$$
$$\mathbf{B} = \mathbf{P}\mathbf{B}_{\mathbf{V}}(\mathbf{K}\mathbf{P})^{-1}$$
$$\mathbf{C} = \mathbf{K}\mathbf{P}\mathbf{C}_{\mathbf{V}}\mathbf{P}^{-1}$$
$$\mathbf{D} = \mathbf{K}\mathbf{P}\mathbf{D}_{\mathbf{V}}(\mathbf{K}\mathbf{P})^{-1}$$
$$\overline{\mathbf{\Phi}} = -dz\mathbf{K}\frac{d\overline{\mathbf{T}}}{dx} = \mathbf{K}\mathbf{P}\mathbf{J}_{\mathbf{V}}$$

Implementation of the method

Direct computation with N points

(Numerical methods $=> N^2$)

Wall temperature field as a function of the input heat flux

Some examples of applications

Periodic structures

Homogénéisation en fonction du nombre de couches Optimization of
the wallFlux
>température field

Diffusive inserts

Construction of the matrix M_{//} in the r direction

Coupled Equations : Analytical solutions in a quadrupole form

Radial discretization (Reinforced composite fibre)

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} \overline{\theta} \\ \overline{T} \end{bmatrix} - \frac{1}{x^p} \begin{bmatrix} D_{\theta} & D_T \\ 0 & a^* \end{bmatrix} \frac{d}{dx} \left(x^p \frac{d}{dx} \left(\begin{bmatrix} \overline{\theta} \\ \overline{T} \end{bmatrix} \right) \right) = \mathbf{0}$$

Mean Temperature analytical quadrupole

The Thermal Quadrupole Formalism. Application to the estimation of thermophysical properties by random heating

- 1. The Thermal Quadrupole Formalism
- 2. Estimation of thermophysical properties by random heating
- 3. Thermal diffusivity mapping from spatial random heating
- 4. Conclusion

Linear estimation : minimization of the prediction error e(t)

27

Linear estimation : minimization of the prediction error e(t)

and H(t) does not depend of y(t)

Thermophysical properties measurement in semi-infinite medium

You can choose the characteristic times with the probe's lengths

$$h_{green}(t) = \frac{1}{b\sqrt{\pi t}}.erf(\frac{b_x}{\sqrt{4at}}).erf(\frac{b_y}{\sqrt{4at}})$$

Simplified model corresponding to the asymtptotical behaviour

$$H_0(s) = \frac{1}{b\sqrt{s} + \frac{k}{K}}$$

... with the thermal probe's effect

$$\begin{bmatrix} H_m \\ I \end{bmatrix} = \begin{bmatrix} I & 0 \\ C_s s & I \end{bmatrix} \begin{bmatrix} I & R_c \\ 0 & I \end{bmatrix} \begin{bmatrix} H_0 \phi_0 \\ \phi_0 \end{bmatrix}$$

...probe's temperature as a function of the input heat flux

$$\frac{k}{K} + bs^{1/2}\overline{T}_m + \alpha_2 s\overline{T}_m + bR_c C_s s^{3/2}\overline{T}_m = \beta_0 + bR_c s^{1/2}\overline{q}$$

... Fractional derivative equation

$$\frac{k}{K} + bD^{1/2}T_m(t) + \alpha_2 D^1 T_m(t) + bR_c C_s D^{3/2} T_m(t) = \beta_0 + bR_c D^{1/2} q(t)$$

Comparison of impulse responses

Reduced sensitivity coefficients (modulus)

Independence of sens. coef.

10¹

Experimental and fitted temperature

Pseudo-random heating

Simulated and recovered I.R.

Linear regression with n+1 successive measurements

$$\mathbf{D}^{1/2}\mathbf{Y}_n = \mathbf{H}_n\,\boldsymbol{\beta} + \mathbf{E}_n$$

OLS Estimator

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{H}_n^t \mathbf{H}_n \right)^{-1} \mathbf{H}_n^t \mathbf{D}^{1/2} \mathbf{Y}_n$$

Fractional derivatives of $T_m(t)$ and q(t)

Sample	Thermal Properties Reference Data	Estimation Results	Relative Error (%)
Calcium Silicate Skamol Super 1100- E	$E = 123.4 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{s}^{1/2}$ $k = 0.074 \text{ Wm}^{-1}\text{K}^{-1}$	$E = 110.8 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{s}^{1/2}$ $k = 0.074 \text{ Wm}^{-1}\text{K}^{-1}$	-10 0.4
Agar Agar Gel 3 gr. / l.	$E = 1597 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{S}^{1/2}$ $k = 0.613 \text{ Wm}^{-1}\text{K}^{-1}$	$E = 1405 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{S}^{1/2}$ $k = 0.606 \text{ Wm}^{-1}\text{K}^{-1}$	-12 -1.1
Extruded Polystyrene Owens Thermofoam	$E = 43.87 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{S}^{1/2}$ $k = 0.025 \text{ Wm}^{-1}\text{K}^{-1}$	$E = 44.93 \text{ Wm}^{-2}\text{K}^{-1}$ ${}^{1}\text{S}^{1/2}$ $k = 0.026 \text{ Wm}^{-1}\text{K}^{-1}$	0.2 6.4

Experimental results

PRBS heating

Power spectral density

Convective coefficients mapping

Thermal characterization of cyclist casque

Characteristic frequencies are estimated :

0.14

0.16

The Thermal Quadrupole Formalism. Application to the estimation of thermophysical properties by random heating

- 1. The Thermal Quadrupole Formalism
- 2. Estimation of thermophysical properties by random heating
- 3. Thermal diffusivity mapping from spatial random heating
- 4. Conclusion

$$\hat{\mathbf{T}}' - \hat{\mathbf{T}} = \begin{bmatrix} \hat{\mathbf{T}}^{\mathbf{t}_0 + \Delta \mathbf{t}} - \hat{\mathbf{T}}^{\mathbf{t}_0} \\ \vdots \\ \hat{\mathbf{T}}^{\mathbf{t} + \Delta \mathbf{t}} - \hat{\mathbf{T}}^{\mathbf{t}} \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta \hat{\mathbf{T}}^{\mathbf{t}} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}} & \hat{\mathbf{T}}^{\mathbf{t}} - T_{\infty} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} - T_{\infty} \\ \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} \\ \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_x \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{t}_0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{bmatrix} \Delta \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \delta_y \hat{\mathbf{T}}^{\mathbf{t}_0} & \hat{\mathbf{T}}^{\mathbf{$$

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{t} \mathbf{X} \right)^{-1} \mathbf{X}^{t} \left(\hat{\mathbf{T}}^{\prime} - \hat{\mathbf{T}} \right)$$

Point by point estimation

 $\mathbf{X}^{t}\mathbf{X} = 4\mathbf{x}4$ matrix

$$\beta_{ij} = \begin{vmatrix} a_{ij} \\ \delta_x k_{ij} \\ (\rho c)_{ij} \\ \frac{\delta_y k_{ij}}{(\rho c)_{ij}} \\ H_{ij} \end{vmatrix}$$

39

The Thermal Quadrupole Formalism. Application to the estimation of thermophysical properties by random heating

- 1. The Thermal Quadrupole Formalism
- 2. Estimation of thermophysical properties by random heating
- 3. Thermal diffusivity mapping from spatial random heating
- 4. Conclusion

4. Conclusions

- Limitation of numerical performance of hybrid quadrupoles
- Complex Geometry
- Both time and spatial random heating

Lost quadrupole

- Thermal tomography

A última pergunta ?

Cadê a melhor receita da Caipirinha ?

