Caracterização Térmica de Meios Semi-Transparentes

Zaqueu E. da Silva ⁽¹⁾, Olivier Wellele ⁽²⁾, Helcio R.B. Orlande ⁽²⁾, Marcelo J. Colaço ⁽³⁾ e Nerbe J. Ruperti Jr. ⁽⁴⁾ ⁽¹⁾ UFPb, ⁽²⁾ COPPE/UFRJ, ⁽³⁾ IME, ⁽⁴⁾ CNEN Junho - 2005 A radiação que atravessa um meio semi-transparente guarda importantes informações sobre o meio e sobre a fonte de radiação Medidas direcionais ou espectrais desta radiação podem ser utilizadas para estimar as propriedades termofísicas do MST ou condições de contorno desconhecidas;
O campo de temperaturas no MST será obtido simultaneamente às estimativas realizadas;

 Medidas de temperatura também podem ser utilizadas para estimar propriedades e condições de contorno
Método Flash Caracterização Térmica de Meios Semi-Transparentes

PARTE I

APLICAÇÃO DO MÉTODO FLASH PARA IDENTIFICAÇÃO DE PROPRIEDADES TERMOFÍSICAS

Plano

Introdução

- Modelagem da transferência de calor em meios semitransparentes
- Métodos de resolução da ETR
- Acoplamento condução-radiação (método Flash)
- Estudo de sensibilidade aos parâmetros que intervêm no método Flash
- > Identificabilidade dos Parâmetros
- > Resultados experimentais
- Conclusões

Transferência de calor acoplada

- Aplicações : técnicas e industriais Acoplamento = Condução + Radiação
- 😕 Radiação pode ser dominante.
- Necessita de um modelo radiativo:
- 1 Avaliação correta da transferência radiativa
- 2 Compatível com outros modos de transferência de calor.

Equação de transferência de calor em meios semitransparentes

Atenuação absorção espalhamento

Equação do tipo integral - diferencial $\nabla [\Omega L(s, \Omega)] + \beta L(s, \Omega) = S(s, \Omega)$ $\odot O \text{ Termo fonte :}$ $S(s, \Omega) = \kappa L^{0}(T) + \frac{\sigma}{4\pi} \int_{\Omega'=4\pi} L(s, \Omega') p(\Omega' \cdot \Omega) d\Omega'$

ETR : Caso simetria axial cilíndrica

ETR Coordenadas cilíndricas $\left(\frac{\mu}{r}\frac{\partial}{\partial r} + \frac{\eta}{r}\frac{\partial}{\partial \phi_{r}} + \xi \frac{\partial}{\partial z} - \frac{\eta}{r}\frac{\partial}{\partial \phi}\right)L(r,\phi_{r},z,\theta,\phi) + \beta L(r,\phi_{r},z,\theta,\phi) = S(r,\phi_{r},z,\theta,\phi)$

Hipótese: distribuição da intensidade é invariável com ϕ_r

 $L_2 \quad \left(\frac{\mu}{r}\frac{\partial}{\partial r} + \xi\frac{\partial}{\partial z} - \frac{\eta}{r}\frac{\partial}{\partial \phi}\right)L(r, z, \theta, \phi) + \beta L(r, z, \theta, \phi) = S(r, z, \theta, \phi)$

⊗ O termo de distribuição angular

$$\left(\frac{\eta}{r}\frac{\partial}{\partial\phi}\right)$$

Solução formal da ETR $\frac{dL(s,\Omega)}{ds} + \beta L(s,\Omega) = S(s,\Omega)$

$$L(s, \Omega) = L(s_0, \Omega) \exp[-\beta(s - s_0)] + \int_{s_0}^{s} S(s') \exp[-\beta(s - s')]\beta \, ds'$$

Solução da ETR para simetria axial cilíndrica

Hipóteses

M S T
> cinza e homogêneo
> Emissivo
> Absorvedor
> difusor
> Estacionário

Calculo do campo de intensidade

Etapas :

- Discretização angular (Método das ordenadas discretas)
- Discretização espacial
- Leis de variação da propagação da intensidade no V.C para cada direção discreta.
- ^{Se} Intensidade média é calculada para cada face do volume de controle
- Intensidade médio no centro do V.C

1 – Discretização angular *termo fonte*

$$\int_{\Omega'=4\pi} L(s,\Omega) p(\Omega'.\Omega) d\Omega' = \sum_{m'=1}^{N} L_{m'} p_{m'.m} w_m$$

condições de contorno

$$\int_{\mathbf{n}.\Omega' < 0} |\mathbf{n}.\Omega'| \mathbf{L}(\mathbf{s},\Omega') \, d\Omega' = \sum_{m'=1}^{N/2} \mathbf{L}_{m'} |\mathbf{n}.\Omega'| \mathbf{w}_m$$

2 – Discretização espacial
(e) - Face lateral externa
(w) - Face lateral interna
(n) - Base superior
(s) - Base inferior

a) vista de topo b)vista lateral do VC

Lei de Variação da Intensidade

Hipóteses

- a V.C. isotérmico
- b Intensidade uniforme sobre as faces do V.C para uma direção discreta m
- c Termo fonte constante

Surperfície lateral - base

$$L_{m}^{r} = L_{m}^{l} \exp[-\beta\Delta s(r)] + S_{m} \left\{ 1 - \exp[-\beta\Delta s(r)] \right\}$$

Base - Surperfície lateral

$$L_{m}^{z} = L_{m}^{b} \exp[-\beta \Delta s(z)] + S_{m} \{1 - \exp[-\beta \Delta s(z)]\}$$

Avaliação das incógnitas

Termo fonte – O termo fonte depende da intensidade nodal. O calculo é feito de maneira interativa.

Distância - solução por considerações geométricas

 L_{m}^{b} , L_{m}^{1} - Devido ao efeito da curvatura, são necessárias interpolações

Distâncias percorridas

 $\phi_{\rm m}$

Q

$$\Delta s(r, \theta_{m}, \phi_{m}) = \frac{r \cos(\phi_{m}) + \sqrt{r_{e}^{2} - r^{2} \sin^{2}(\phi_{m})}}{\sin(\theta_{m})}$$
$$\pi / 2 < \phi_{m} < \pi$$

$$\Delta s(r, \theta_{m}, \phi_{m}) = \frac{r \cos(\phi_{m}) - \sqrt{r_{w}^{2} - r^{2} \sin^{2}(\phi_{m})}}{\sin(\theta_{m})}$$
$$0 < \phi_{m} < \phi$$

$$\Delta s(r, \theta_{m}, \phi_{m}) = \frac{r \cos(\phi_{m}) - \sqrt{r_{w}^{2} - r^{2} \sin^{2}(\phi_{m})}}{\sin(\theta_{m})}$$

Interpolação das intensidades

 $_{1} - \phi_{m} < \phi_{e} < \phi_{m'}$

2 - Lei de interpolação linear : $L_{in} = cL_{m'} + (1-c)L_m$ com : $c = \frac{\phi_e - \phi_m}{\phi_{m'} - \phi_m}$ 3 - Ângulo de entrada

$$\phi_{e} = \sin^{-1} \left(\frac{r \sin(\phi_{m})}{r_{w}} \right)$$

Intensidades sobre as faces V.C

Solução

Discretização espacial

^COs co-senos diretores determinam as configurações.

As leis de variações são utilizadas para o cálculos das intensidades médias sobre as faces.

Conhecendo as intensidades que saem de cada face. Faz-se o cálculo da intensidade média nodal.

↔ O cálculo é feito da seguinte maneira :

Progressiva - Passando de um VC para outro. A direção da varredura ocorre dos contornos onde as intensidades são conhecidas

Iterativo - O termo fonte e as CC dependem da intensidades nos nós.

Validação

Validação

Exemplo 2 (teste de simetria) MST Cinzento Emissor Absorvedor Difusão isotrópica Isotérmico $\beta R = 1$ Condições de contornos Sup. Negras e frias

Modelo parede plana (1D)

 $T_s=0$

Resultado

	$q^{r} = \sum_{\mu_{m} > 0} L_{m} \mu_{m} w_{m}$			$G = \sum_{m}^{N} L_{m} w_{m}$		
τ	S_6	Exacte	Erreur(%)	S_6	Exact	Erreur(%)
0.1	0.742881	0.74512	0.3	1.43054	1.3965	2.78
1.0	0.482058	0.48599	0.81	0.84303	0.8499	0.8
3.0	0.280248	0.28045	0.07	0.48675	0.4961	0.13

MST : puramente difusar

Lei de Variação da Intensidade

$$L_{s,m} = L_{n,m} \exp\left[-\beta\left(\frac{z-z_0}{\mu_m}\right)\right] + S_m\left(1-\exp\left[-\beta\left(\frac{z-z_0}{\mu_m}\right)\right]\right)$$

Intensidade média V.C

$$L_{P,m} = \left(L_{1,m} - S_{m}\right) \left(1 - Exp\left[-\beta\left(\frac{z - z_{0}}{\mu_{m}}\right)\right]\right).$$
$$\left(\frac{\mu_{m}}{\beta(z - z_{0})}\right) + S_{m}$$

Acoplamento condução - radiação

Problema Físico

Equação da energia (Hipóteses) Simetria cilíndrica S Isotrópico e Homogêneo Transiente Condições de Contornos Perdas por radiação e convecção Condição Inicial Temperatura imposta

Formulação Matemática Equação da Energia $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{\partial^2 T}{\partial z^2} - \frac{1}{\lambda}\nabla \cdot \mathbf{q}^r = \frac{\rho c_p}{\lambda}\frac{\partial T}{\partial t}$

 $\nabla .q^{r}, - \text{divergente do fluxo radiativo}$ Condições de contornos $(1-\rho_{i})q_{z}^{r} + h_{r} T_{s} + h T_{\infty} = -\lambda \frac{\partial T}{\partial z} + hT + h_{r} T + \varepsilon_{i} n^{2} \overline{\sigma} T^{4}$ Condição Inicial $T_{i} - T_{e} = \frac{q_{\text{flash}}}{\rho c_{p} \varepsilon}$ $T_{i} = T_{e}$

Solução Numérica

Metodologia de Cálculo

1- Aproximação Volume de controle → Equações em diferenças finitas

- 2 Campo de temperatura inicial uniforme
- 3 Solução da ETR Método das Ordenadas discretas

4 – Cálculo das grandezas radiativas: radiação incidente, fluxos nas superfícies e divergente do fluxo radiativo.

5 – Solução da equação da energia - Método interativo de Newton-Raphson

As etapas 3 à 5 são repetidas até alcançar o critério de convergência.

Validação Caso 1D

Température réduite

Simetria Cilindrica

Bidimensional → Unidimensional

Identificação dos paramètres Problema direto CC propriedades termofísicas propriedades radiativas

Problema Inverso

{*T Determinação fluxo* CC

→{ propriedades termofísicas propriedades radiativas

Análise de sensibilidade

Objetivo \longrightarrow determinar as condições mais favoráveis para determinar os parâmetros desconhecidos

1 – Coeficientes de sensibilidade aos parâmetros

$$\boldsymbol{\Psi}_{i}^{*} = p_{i} \frac{\partial \theta(\boldsymbol{z}^{*}, \boldsymbol{r}^{*}, \boldsymbol{t}, \boldsymbol{p}_{i})}{\partial p_{i}}$$

- 2 Análises dos coeficientes de sensibilidade
 - qualitativo
 - quantitativo (ncm)
- 3 parâmetros identificáveis

Coeficientes de sensibilidade (Superficie Negra)

Identificação – Experiência simulada

Método de Levenberg - Marquardt

Résultats d'identification simulés

Param	ètres	Valeurs					
Connus	Inconnus	Réelles	Identifiées				
ε=1, H=110,	λ	λ=2.0	$\lambda = 1,95 \pm 0,26.10^{-1}$				
β=200	ρc _p	$\rho c_p = 2.10^6$	$\rho c_p = 2,054.10^6 \pm 0, 24.10^5$				
q _{flash} =8. 10 ⁵		$a = 10^{-6}$	$a = 9,5.10^{-7} \pm 1,4.10^{-8}$				
β=200	Η, λ, ρc _p	H=110.0	$H = 117.8 \pm 11.4$				
ε =1.0		$\lambda = 2.0$	$\lambda = 1.99 \pm 0.29.10^{-1}$				
q _{flash} =8. 10 ⁵		$\rho c_p = 2.10^6$	$\rho c_p = 2,02.10^6 \pm 0,82.10^5$				
		$a = 10^{-6}$	$a = 0.98.10^{-7} \pm 2.08.10^{-8}$				
H=110	β, λ, ρc _p	$\beta = 200.0$	$\beta = 196.0 \pm 26.4$				
ε=1.0		$\lambda = 2.0$	$\lambda = 1.995 \pm 0.196$				
$q_{\text{flash}}=8.10^5$		$\rho c_p = 2.10^6$	$\rho c_p = 1,97.10^6 \pm 0,192.10^6$				
		$a = 10^{-6}$	$a = 1.013.10^{-6} \pm 7,8.10^{-9}$				
Données de simulation : $\Delta t = 1.0 - \text{Exp}(-i.2.23^{-5})$; $\delta = 0.05 \text{T}_{\text{max}}$.							
Intervalle d'identification : $0 \le t \le 0.53$; maillage : 21 noeuds							

RESULTADOS EXPERIMENTAIS

Thermogramas

CEACESTA⇒Vidro de silício LEMT A⇒Irtran2

Dispositivo Experimental

 $\Psi(p_i)$

Resultados

SUPRASIL ($R=20 \text{ mm}, e = 1.96 \text{ mm}, T_e=298 \text{ K}$).

Paramètres (SI)				
Connus	Inconnus	Estimées	Fabricant	
H=10	$\lambda, \rho c_p,$	λ= 1.18	1.38	
$q_{flash}=20000$		$\rho c_p = 1,47.10^6$	$1,7.10^{6}$	
ε=1.0		$a = 8,05.10^{-7}$	8,1.10 ⁻⁷	
β=280				
pas du temps : $\Delta t = 0.001$ s maillage : 21 noeuds				
Intervalle d'identification : $0.009 \le t \le 0.6$;				

Resíduos

Résidus

Resultados

SUPRASIL ($R=20 \text{ mm}, e = 1.96 \text{ mm}, T_e=723 \text{ K}$).

Paramètres (SI)					
Connus	Inconnus	Estimées	Fabricant		
H=85	$\lambda, \rho c_p,$	λ= 1.91	$\lambda = 1.93$		
$q_{flash}=20000$		$\rho c_p = 2,9.10^6$	$\rho c_p = 2, 4.10^6$		
ε=1.0		$a = 6,54.10^{-7}$	$a = 7,79.10^{-7}$		
β=280					
pas du temps : $\Delta t = 0.001 \text{ s}$: maillage : 21 noeuds					
Intervalle d'identification : $0.009 \le t \le 0.6$;					

Difusividade Térmica - IRTRAN 2 (ZnS)

température (K)	ce travail	LEMTA			
298*	8,46.10-6	8,3.10-6			
633	3,08.10 ⁻⁶	3,01.10 ⁻⁶			
783	2,1.10 ⁻⁶	2,46.10-6			
pas du temps : $\Delta t = 0.001$; * $\Delta t = 0.0005$ s ; 21 noeuds					
Intervalle d'identification					

Conclusões

Estudo de transferência de calor acoplada condução-radiação
 Método de predição de TC paras geometria cilíndrica e 1D foi apresentado

A eficiência do método e compatibilidade com a equação da energia foi testada.

Estudo de sensibilidade aos parâmetros – Experiência flash foi realizado.

É possível identificar a difusividade térmica

A identificação dos parâmetros radiativos é delicada

Caracterização Térmica de Meios Semi-Transparentes

PARTE II

IDENTIFICAÇÃO DE PROPRIEDADES TERMOFÍSICAS DE MATERIAIS SEMITRANSPARENTES A ALTAS TEMPERATURAS

Características gerais das cerâmicas:

- Excelente resistência mecânica a T > 1500 °C
- Isolante térmico
- Comportamento radiativo mal conhecido e extremamente variável

▲ Transferência de calor por condução e radiação acopladas

Objetivo deste trabalho:

\rightarrow Estimativa das Propriedades Termofísicas

Propriedades condutivas:

$$k \to k_x, k_y, k_z$$

$$h$$

Função da temperatura T

Propriedades radiativas:

$$\sigma_{s}$$
$$p(\vec{s}' \to \vec{s})$$

 K_{a}

Função da temperatura T e do comprimento de onda λ

 \rightarrow Estimativa simultânea impossível

Formulação do problema direto:

Acoplamento Condução-Radiação

Resolução simultânea da

• Equação de condução do calor

$$C \frac{\partial T}{\partial t} = k_x \frac{\partial^2 T}{\partial x^2} + k_y \frac{\partial^2 T}{\partial y^2} + k_z \frac{\partial^2 T}{\partial z^2} - \nabla \cdot q^{rad}$$

onde
$$\nabla \cdot q^{rad} = \int_{\lambda=0}^{\infty} \kappa_{a\lambda} \Big[4\pi I_{b\lambda}(\mathbf{r},T) - \int_{\Omega=4\pi} I_{\lambda}(\mathbf{r},\vec{s}) d\Omega \Big] d\lambda$$

• <u>Equação de Transferência Radiativa</u> (meio cinza equivalente)

$$\xi \frac{\partial I_{\lambda}}{\partial x} + \eta \frac{\partial I_{\lambda}}{\partial y} + \mu \frac{\partial I_{\lambda}}{\partial z} = -(\kappa_{a\lambda} + \sigma_{s\lambda})I_{\lambda} + S_{\lambda}$$

onde
$$S_{\lambda} = \kappa_{a\lambda}n_{r}^{2}I_{b\lambda}(T) + \frac{\sigma_{s\lambda}}{4\pi}\int_{\Omega=4\pi}I_{\lambda}p(\vec{s}' \to \vec{s})d\Omega$$

Formulação do problema direto: Condições de contorno condutivas: $\frac{\partial T}{\partial n} = 0$ Planos de simetria: X Contorno físico: X $k\frac{\partial T}{\partial n} + hT + \varepsilon\sigma T^{4} = \varepsilon \left[\int_{\vec{n}.\vec{s}>0} I(\mathbf{r},\vec{s}) \ \vec{n}\cdot\vec{s} \ d\Omega - n_{r}^{2}\pi I_{b}(T) \right] +$ $hT_{\infty} + \mathcal{E}\sigma T_{\infty}^4 + \mathcal{E}_{10.6 \text{ um}}.q_{laser}$ Exame de Qualificação – 26/04/2005

Solução do problema condutivo:

→ Algoritmo implícito de brian integrado

$$\begin{array}{ll} \underline{Passo 1}: & \left(a_{e}+a_{w}+a_{p}^{0}\right)T_{p}^{*}=a_{e}T_{E}^{*}+a_{w}T_{W}^{*}+S^{n} \\ & S^{n}=a_{n}\left(T_{N}^{n}-T_{p}^{n}\right)+a_{s}\left(T_{S}^{n}-T_{p}^{n}\right)+a_{t}\left(T_{T}^{n}-T_{p}^{n}\right)+a_{b}\left(T_{B}^{n}-T_{p}^{n}\right)+\\ & +a_{p}^{0}T_{p}^{n}-\left(\nabla\cdot q^{rad^{n}}\right).\Delta V \\ \hline \underline{Passo 2}: & \left(a_{N}+a_{S}+a_{p}^{0}\right)T_{p}^{**}=a_{N}T_{N}^{**}+a_{S}T_{S}^{**}+S^{*} \\ & S^{*}=a_{e}\left(T_{E}^{*}-T_{p}^{*}\right)+a_{w}\left(T_{W}^{*}-T_{p}^{*}\right)+a_{t}\left(T_{T}^{n}-T_{p}^{n}\right)+a_{b}\left(T_{B}^{n}-T_{p}^{n}\right) \\ & +a_{p}^{0}T_{p}^{n}-\left(\nabla\cdot q^{rad^{n}}\right).\Delta V \\ \hline \underline{Passo 3}: & \left(a_{T}+a_{B}+a_{p}^{0}\right)T_{p}^{n+1}=a_{T}T_{T}^{n+1}+a_{B}T_{B}^{n+1}+S^{**} \\ & S^{**}=a_{e}\left(T_{E}^{*}-T_{p}^{*}\right)+a_{w}\left(T_{W}^{*}-T_{p}^{*}\right)+a_{n}\left(T_{N}^{**}-T_{p}^{**}\right)+a_{s}\left(T_{S}^{**}-T_{p}^{**}\right) \\ & \text{onde} \\ & +a_{p}^{0}T_{p}^{**}-\left(\nabla\cdot q^{rad^{n}}\right).\Delta V \end{array}$$

Método de Volumes Finitos:

 $0,5 < f_{x_i}^l < 1$

Solução do problema radiativo:

$$a_P^l I_P^l = \sum_{e,w,s,n,t,b} a_i^l I_i^l + b_P^l$$

1

Algoritmo explícito

$$a_{P}^{l} = \sum_{e,w,s,n,t,b} \max\left(-\frac{A_{i}D_{i}^{l}}{f_{x_{i}}^{l}},0\right) + \tilde{\beta}_{m}^{l}\Delta V\Omega^{l} \qquad ;$$
$$a_{i}^{l} = \max\left(-\frac{A_{i}D_{i}^{l}}{f_{x_{i}}^{l}},0\right) \qquad ; \qquad b_{P}^{l} = \tilde{S}_{m}^{l}\Delta V\Omega^{l} \qquad ;$$

$$\begin{split} \tilde{\beta}_{m}^{l} &= \beta_{m} - \frac{\sigma_{sm}}{4\pi} \overline{p}_{m}^{ll} \Omega^{l} \\ \tilde{S}_{m}^{l} &= \kappa_{am} I_{bm} + \frac{\sigma_{sm}}{4\pi} \sum_{l' \neq l} I_{P}^{l'} \overline{p}_{m}^{l'l} \Omega^{l'} \end{split}; \qquad \overline{p}_{m}^{l'l} = \frac{1}{\Omega^{l} \Omega^{l'}} \int_{\Omega^{l'}} \int_{\Omega^{l}} p_{m} \left(\vec{s} \, \cdot \to \vec{s} \right) d\Omega d\Omega' \end{split}$$

 \rightarrow

Validação do problema de condução:

Comparação com solução analítica

Validação do problema de radiação:

Comparação com solução numérica 3D

·

Validação do problema acoplado C/R:

Comparação com soluções numéricas 1D de problema Flash condução-radiação

Validação do problema acoplado C/R:

Comparação com soluções numéricas 1D de problema Flash condução-radiação

Procedimentos iterativos para problemas não lineares:

Método de Levenberg-Marquardt:

$$\mathbf{P}^{k+1} = \mathbf{P}^{k} + \left(\mathbf{J}^{T}\mathbf{J} + \boldsymbol{\mu}^{k}\boldsymbol{\Omega}^{k}\right)^{-1}\mathbf{J}^{T}\left[\mathbf{Y} - \mathbf{X}(\mathbf{P}^{k})\right]$$

• Método de estimatíva seqüêncial:

$$\mathbf{P}_{i+1}^{k+1} = \mathbf{P}_{i+1}^{k} + \left[(\mathbf{J}_{i+1}^{k})^{T} \mathbf{W}_{i+1} \mathbf{J}_{i+1}^{k} + \mathbf{V}_{i}^{-1} \right]^{-1} \times \left\{ (\mathbf{J}_{i+1}^{k})^{T} \mathbf{W}_{i+1} \left[\mathbf{Y}_{i+1} - \mathbf{X}_{i+1} (\mathbf{P}_{i+1}^{k}) \right] + \mathbf{V}_{i}^{-1} \left(\mathbf{P}_{i} - \mathbf{P}_{i+1}^{k} \right) \right\}$$

i = informações prévias

i+1 = estimativa atual

Quando a estimativa inicial é longe do vetor de parâmetros reais

- Método de Levenberg-Marquardt
- Método de estimatíva seqüêncial

Solução: recorrer aos métodos estocásticos

- Algoritmo Genético
- Método de evolução diferencial
- Método Particle Swarm

Análise dos coeficientes de sensibilidade

Análise dos coeficientes de sensibilidade

Exame de Qualificação – 26/04/2005

Análise dos coeficientes de sensibilidade

Análise dos coeficientes de sensibilidade

Análise dos coeficientes de sensibilidade

Otimização do experimento:

- Método de Levenberg-Marquardt
- Método de estimatíva seqüêncial

Não convergem

quando a estimativa inicial é longe do vetor de parâmetros reais

- Método Híbrido \rightarrow Sempre converge Velocidade lenta

solução de mais de <u>10000 vezes o problema direto</u>

Resultados: Material ortotrópico

ľ	$k_x = 3 \text{ W/m.K}$	$k_{y} = 20 \text{ W/m.K}$	$k_z = 8 \text{ W}$	/m.K
	$C = 2.5 \times 10^6 \text{ J/m}^3.\text{K}$	$h^{rad} = 1819.4 \text{ W/m}^2.\text{K}$		$\Delta T = \pm 2 \text{ K}$

P_{j}	Estimativa Inicial	Estimativa pelo Método Híbrido (PB Direto reduzido)		Estimativa pelo Método Seqüencial (Gradiente de baixa resolução)			
C [MJ/m ³ .K]	0.1	<u># iterações</u>	2.713×10^{6}	<u># iterações</u>	2.385×10^{6}	±	0.242×10^{6}
k_x [W/m.K]	50	200	3.913	11	2.932	±	0.237
k_y [W/m.K]	50	<u>Funcional</u>	21.844	<u>Funcional</u>	19.384	±	1.803
k_z [W/m.K]	50	1124.01	10.291	1118.24	7.468	±	1.338
h^{rad} [W/m ² .K]	5		1835.		1812.	±	69.
C [MJ/m ³ .K]	10	<u># iterações</u>	2.457×10^{6}	<u># iterações</u>	2.385×10^{6}	±	0.242×10^{6}
k_x [W/m.K]	0.5	200	3.979	11	2.932	±	0.237
k_y [W/m.K]	0.5	<u>Funcional</u>	20.490	<u>Funcional</u>	19.384	±	1.803
k_z [W/m.K]	0.5	1119.52	8.846	1118.24	7.468	±	1.338
h^{rad} [W/m ² .K]	5000		1734.		1812.	±	69.
C [MJ/m ³ .K]	0.1	<u># iterações</u>	2.572×10^{6}	<u># iterações</u>	2.385×10^{6}	±	0.242×10^{6}
k_x [W/m.K]	50	200	3.936	12	2.932	±	0.237
k_y [W/m.K]	0.5	<u>Funcional</u>	21.139	<u>Funcional</u>	19.384	±	1.803
k_z [W/m.K]	50	1120.13	9.434	1118.24	7.468	±	1.338
h^{rad} [W/m ² .K]	5		1779.		1812.	±	69.

Resultados: Material isotrópico

2	$k_x = 5 \text{ W/m.K}$	$k_y = 5 \text{ W/m.K}$	$k_z = 5 \text{ W/m.K}$
E.	$C = 2.5 \times 10^6 \text{ J/m}^3.\text{K}$	$h^{rad} = 1819.4 \text{ W/m}^2.\text{K}$	$\Delta T = \pm 2 \text{ K}$

P_{j}	Estimativa Inicial	Estimativa pelo Método Híbrido (PB Direto reduzido)		Estimativa pelo Método Seqüencial (Gradiente de baixa resolução)			
C [MJ/m ³ .K]	0.1	<u># iterações</u>	2.837×10^{6}	<u># iterações</u>	2.588×10^{6}	±	0.203×10^{6}
k_x [W/m.K]	50	200	6.416	11	5.043	±	0.351
k_y [W/m.K]	50	<u>Funcional</u>	6.414	<u>Funcional</u>	5.040	±	0.348
k_z [W/m.K]	50	1075.17	6.758	1041.53	5.085	±	0.669
h^{rad} [W/m ² .K]	5		2022.		1826.	±	43.
C [MJ/m ³ .K]	10	<u># iterações</u>	3.432×10^{6}	<u># iterações</u>	2.588×10^{6}	±	0.203×10^{6}
k_x [W/m.K]	0.5	105	7.464	11	5.043	±	0.351
k_y [W/m.K]	0.5	<u>Funcional</u>	7.545	<u>Funcional</u>	5.040	±	0.348
k_z [W/m.K]	0.5	1093.6	10.428	1041.53	5.085	±	0.669
h^{rad} [W/m ² .K]	5000		1792.		1826.	±	43.
C [MJ/m ³ .K]	0.1	<u># iterações</u>	3.048×10^{6}	<u># iterações</u>	2.588×10^{6}	±	0.203×10^{6}
k_x [W/m.K]	50	200	6.795	11	5.043	±	0.351
k_y [W/m.K]	0.5	<u>Funcional</u>	6.786	<u>Funcional</u>	5.040	±	0.348
k_z [W/m.K]	50	1061.36	8.392	1041.53	5.085	±	0.669
h^{rad} [W/m ² .K]	5		1817.		1826.	±	43.

- As propriedades termofísicas (condutivas) de um MST a altas temperaturas foram estimadas.
- Incerteza pequena apesar de $\Delta T = \pm 2 \text{ K}$
- Resolver o problema inverso com medidas experimentais
- Construir o experimento 1:
 - (medidas de temperatura transiente em vários pontos de uma amostra de MST a altas temperaturas por câmera infravermelha).

Exame de Qualificação – 26/04/2005

Exame de Qualificação – 26/04/2005

Acoplamento Condução-Radiação

Resolução simultânea da

• Equação de condução do calor

$$C\frac{\partial T}{\partial t} = k_x \frac{\partial^2 T}{\partial x^2} + k_y \frac{\partial^2 T}{\partial y^2} + k_z \frac{\partial^2 T}{\partial z^2} - \nabla \cdot q^{rad}$$

onde
$$\nabla \cdot q^{rad} = \int_{\lambda=0}^{\infty} \kappa_{a\lambda} \Big[4\pi I_{b\lambda}(\mathbf{r},T) - \int_{\Omega=4\pi} I_{\lambda}(\mathbf{r},\vec{s}) d\Omega \Big] d\lambda$$

• <u>Equação de Transferência Radiativa</u> (meio cinza por bandas)

$$\xi \frac{\partial I_{\lambda}}{\partial x} + \eta \frac{\partial I_{\lambda}}{\partial y} + \mu \frac{\partial I_{\lambda}}{\partial z} = -(\kappa_{a\lambda} + \sigma_{s\lambda})I_{\lambda} + S_{\lambda}$$

onde
$$S_{\lambda} = \kappa_{a\lambda}n_{r}^{2}I_{b\lambda}(T) + \frac{\sigma_{s\lambda}}{4\pi}\int_{\Omega=4\pi}I_{\lambda}p(\vec{s}' \to \vec{s})d\Omega$$

Condições de contorno radiativas:

Plano de simetria:

$$I_{\lambda}(\mathbf{r},\vec{s}) = I_{\lambda}(\mathbf{r},\vec{s}^{*})$$

Fronteira transparente com mudança de índice de refração:

$$I_{\lambda}(\mathbf{r}, \vec{s}) = I_{\lambda}(\mathbf{r}, \vec{s}^{*}) \quad \text{para} \quad \theta_{i} > \theta_{c}$$
$$I_{\lambda}(\mathbf{r}, \vec{s}) = 0 \quad \text{para} \quad \theta_{i} < \theta_{c}$$

Formulação do problema direto: Condições de contorno condutivas: $\frac{\partial T}{\partial n} = 0$ V Planos de simetria: ${\mathcal X}$ Contorno físico: X n_r T_{∞} $k\frac{\partial T}{\partial n} + hT = hT_{\infty} + \mathcal{E}_{10.6 \ \mu m}.q_{laser}$

Incógnitas do problema direto

$$\begin{aligned} \tilde{n}_r(\lambda,T) &= n_r(\lambda,T) + ik_r(\lambda,T) \\ \rho(\lambda,\theta,T) \\ p(\lambda,\psi',\theta',\psi,\theta) \end{aligned}$$

É necessário utilizar um modelo de predição das propriedades óticas

- 1) Equação de Lorentz: $\tilde{n}_r(\lambda,T) \rightarrow \rho(\lambda,\theta,T)$
- 2) Teoria de Mie (partículas esféricas) Método de Monte-Carlo

 $p(\lambda, \psi', heta', \psi, heta)$

Como representar a função de fase Com poucos parâmetros ?

Experimento 1:

- Resolver o problema inverso com medidas experimentais.
- Construir o experimento 1 de medidas de temperatura transiente.

Para sistemas em coordenadas cilíndricas:

- Análise dos coeficientes de sensibilidade
- Otimização do experimento
- Testar o problema inverso sob medidas simuladas

$$\Rightarrow$$
 estimar C, k_r, k_{ψ}, k_z, h

Experimento 2:

- Terminar a formulação do problema de predição das propriedades óticas.
- Analisar os coeficientes de sensibilidade com relação a $\kappa_{a\lambda}, \sigma_{s\lambda}, g_{\lambda}$ $\lambda = 1, ..., N_f$
- Realizar medidas de fator de emissão espectral e direcional
- Resolver o problema inverso e estimar $\kappa_{a\lambda}, \sigma_{s\lambda}, g_{\lambda}$

