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Physical ProblemPhysical Problem
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Mathematical FormulationMathematical Formulation
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DIRECT PROBLEM

Known:

• Strength of the source term: 

gp(t)

Determine:
• Temperature field T(x,t)

INVERSE PROBLEM

Known:

• Temperature measurements 

taken at a location xmeas

Estimate:
• Strength of the source term: gp(t)

Inverse Heat Transfer Inverse Heat Transfer 
Problem Concept Problem Concept 



With respect to the heat transfer mode:

• IHTP of conduction
• IHTP of convection (forced or natural)
• IHTP of surface radiation
• IHTP of radiation in participating medium
• IHTP of simultaneous conjugate modes
• IHTP of phase change

Classification Of InverseClassification Of Inverse
Heat Transfer ProblemsHeat Transfer Problems



With respect to the unknown quantity:

• IHTP of boundary conditions
• IHTP of thermophysical properties
• IHTP of initial condition
• IHTP of source term
• IHTP of geometric characteristics of a heated body

Classification Of Inverse Classification Of Inverse 
Heat Transfer ProblemsHeat Transfer Problems



New Research Paradigm (Prof. J. BECK)

The results obtained from numerical 
simulations and from experiments are not 
simply compared a posteriori, but a close 
synergism exists between experimental and 
theoretical researchers during the course of 
the study, in order to obtain the maximum of 
information regarding the physical problem 
under picture.

Direct Problem Versus Direct Problem Versus 
Inverse ProblemInverse Problem



Inverse Problems are ILL-POSED.

A solution for a well-posed problem (Hadamard) 
must satisfy the conditions of:

• existence
• uniqueness

• stability with respect to the input data

Difficulties In The Solution Of Difficulties In The Solution Of 
Inverse Heat Transfer Problems Inverse Heat Transfer Problems 



• Integral equation approach.
• Series solution approach.
• Polynomial approach.
• Hyperbolization of the heat conduction equation.
• Space marching techniques together with filtering of the noisy input data
• Iterative filtering techniques.
• Steady-state techniques.
• Beck’s sequential function specification method.
• Levenberg-Marquardt’s method for the minimization of the least-squares norm. 
• Tikhonov’s regularization approach.
• Iterative regularization methods for parameter and function estimations.
• Genetic algorithms.

The solution of inverse problems requires 
its reformulation as well-posed problems.

An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



The time domain over which measurements are used in 
the inverse analysis may be used to classify the methods 
of solution. Consider the estimation of the strength of the 
heat-source term gp(t) in the time domain. Three different 
possible time domains for the measurements used in the 
estimation of gp(t) up to time tf include:

a. up to time ti < tf .
b. up to time ti < tf plus few time steps.
c. the whole time domain 0 < t < tf .

Sequential

Whole-domain

An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



• The predicted quantity should be accurate if the measured data are of 
high accuracy.
• The method should be stable with respect to measurement errors.
• The method should have a statistical basis and permit various statistical 
assumptions for the measurement errors.
• The method should not require the input data to be a priori smoothed.
• The method should be stable for small time steps or intervals. This 
permits a better resolution of the time variation of the unknown quantity 
than is permitted by large time steps.
• Temperature measurements from one or more sensors should be 
permitted.
• The method should not require continuous first derivatives of unknown 
functions. Furthermore, the method should be able to recover functions 
containing jump discontinuities.

Criteria for the Evaluation Criteria for the Evaluation 
of IHTP Solution Procedures of IHTP Solution Procedures 



• Knowledge of the precise starting time of the application of an unknown 
surface heat flux or source term should not be required.
• The method should not be restricted to any fixed number of 
measurements.
• The method should be able to treat complex physical situations, 
including, among others, composite solids, moving boundaries, 
temperature dependent properties, convective and radiative heat transfer, 
combined modes of heat transfer, multi-dimensional problems and 
irregular geometries.
• The method should be easy for computer programming.
• The computer cost should be moderate.
• The user should not have to be highly skilled in mathematics in order to 
use the method.
• The method should permit extension to more than one unknown.

Criteria for the Evaluation Criteria for the Evaluation 
of IHTP Solution Procedures of IHTP Solution Procedures 



)()( TYTY −−= TSMinimize:

When the transient readings Yi taken at times ti, 
i=1,...I of a single sensor are used in the inverse 
analysis:
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Remark:Remark: Statistical hypotheses.Statistical hypotheses.
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The unknown function gp(t) is approximated as:

where:Cj(t) are known basis functions
N is the number of basis functions used in the  

approximation (known for the analysis)
Pj are the unknown parameters

Parameter EstimationParameter Estimation



• No assumption is made regarding the functional form 
of the unknown.
• Minimization is performed in an infinite dimensional 
space of functions, or minimization is performed in a 
finite dimensional space where N is large, e.g., 
Cj(t) = δ(ti), i = 1,...,I, N = I.

I = Number of measurements
N = Number of unknown parameters

Function EstimationFunction Estimation
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Function EstimationFunction Estimation



Remark: If the inverse heat transfer problem involves the 
estimation of only few unknown parameters from transient 
temperature measurements, the use of the ordinary least squares 
norm can be stable.  However, if the inverse problem involves the 
estimation of a large number of parameters, such as the recovery
of the unknown transient strength of the heat source term gp(ti) at 
times ti, i=1,…,I, excursion and oscillation of the solution may 
occur. In this case, regularization (or stabilization) techniques are 
required.

An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



Tikhonov’s Whole-Domain Regularization

Zeroth order:

First order:

� α0 and α1 are the regularization parameters.
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An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



Beck’s Sequential Function Specification Technique 

� Regularization is obtained from the least-squares averaging 
capabilities and from the measurements taken at future time steps.

�
−+

=
−=

1
2)()]([

ri

is
ssip TYtgS

where r is the number of future measurements

An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



Alifanov’s Iterative Regularization 

� Regularization is obtained from the stopping criterion utilized
for the iterative procedure.

An Overview Of Solution Techniques An Overview Of Solution Techniques 
For Inverse Heat Transfer Problems For Inverse Heat Transfer Problems 



• Deterministic Methods
- Newton-Gauss’ Method
- Levenberg-Marquardt’s Method
- Steepest Descent Method
- Conjugate Gradient Method
- Newton’s Method 
- Quasi-Newton Methods

• Evolutionary and Stochastic Methods
- Genetic Algorithms
- Differential Evolution 
- Particle Swarm
- Simulated Annealing

• Hybrid Methods
• Sequential Parameter Estimation Technique

Parameter EstimationParameter Estimation
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Maximum Likelihood Objective Function

Hypotheses:

• The errors are additive, with zero mean and normally 
distributed.
• The statistical parameters describing the errors are 
known.
• There are no errors in the independent variables.
• There is no prior information about P.

NewtonNewton--GaussGauss’’ MethodMethod



For uncorrelated measurements:
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where J is the Sensitivity Matrix.

For the minimization of SML(P):

NewtonNewton--GaussGauss’’ MethodMethod
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Sensitivity Matrix AndSensitivity Matrix And
Sensitivity CoefficientsSensitivity Coefficients



(i) Direct analytic solution

(ii) Boundary value problem

(iii) Finite-difference approximation

How To Compute TheHow To Compute The
Sensitivity Coefficients ?Sensitivity Coefficients ?



The analytical solution for our test-problem at the measurement 
position is given by:
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By substituting the strength of the source term gp(t) given by

into the equation above and differentiating the resulting expression with 
respect to Pj , we find the expression for the sensitivity coefficient for the
parameter Pj as
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(i) Direct Analytic Solution For (i) Direct Analytic Solution For 
Determining Sensitivity Coefficients Determining Sensitivity Coefficients 



By differentiating the direct problem with respect to the 
parameter Pj, after substituting gp(t) in its parameterized form,
we obtain the sensitivity problem governing the sensitivity 
coefficients Jj (x,t) as

(ii) The Boundary Value Problem (ii) The Boundary Value Problem 
Approach For Determining Approach For Determining 
The Sensitivity Coefficients The Sensitivity Coefficients 

in 0 < x < 1,      for t > 0

at x = 0,       for t > 0

at x = 1,       for t > 0 

for t = 0 ,     in 0 < x < 1
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(iii) Finite Difference Approximation (iii) Finite Difference Approximation 
For Determining Sensitivity Coefficients For Determining Sensitivity Coefficients 



Linear Problems: J does not depend on P PJPT =)(

0)]([2 =−− PTYWJT
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Linear ProblemsLinear Problems



Nonlinear Problems:

0)]([2 =−− PTYWJT
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NewtonNewton--GaussGauss’’ MethodMethod



0≠JJT

ILL-CONDITIONED PROBLEMS: 0≈JJT

• Small magnitudes for the sensitivity coefficients
• Columns of the sensitivity matrix are linearly dependent

0≠WJJT or

IdentifiabilityIdentifiability Condition Condition 



where λk is the damping parameter and ΩΩΩΩk is a diagonal matrix.

• The Levenberg-Marquardt Method is related to Tikhonov’s
regularization approach.
• Compromise between steepest-descent method and Gauss' method.
• Simple, powerful and straightforward iterative procedure.
• Capable of treating complex physical situations.

• Easy to program.
• Stable and converges fast.

)]([][ 11 kTkkTkk PTYWJWJJPP −++= −+ ΩΩΩΩλ

The LevenbergThe Levenberg--Marquardt MethodMarquardt Method
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Stopping Criteria

where ε1, ε2 and ε3 are user prescribed tolerances and || . || is 
the vector Euclidean norm.

The The levenberglevenberg--Marquardt methodMarquardt method



Suppose that temperature measurements Y=(Y1,Y2,...,YI) are given at times ti , 
i=1,...,I. Also, suppose an initial guess P0 is available for the vector of unknown 
parameters P. Choose a value for µ0, say, µ0 = 0.001 and set k=0. Then,

1. Solve the direct heat transfer problem with the available estimate Pk in order to 
obtain the temperature vector T(Pk)=(T1,T2,...,TI).

2. Compute S(Pk).
3. Compute the sensitivity matrix Jk and then the matrix Wk .
4. Compute the new estimate Pk+1

5. Solve the direct problem with the new estimate  Pk+1 in order to find T(Pk+1).
Then compute S(Pk+1)

6. If S(Pk+1) > S(P k), replace µk by 10µ k and return to step 4.
7. If S(Pk+1) < S(Pk), accept the new estimate Pk+1 and replace µk by 0.1µ k.
8. Check the stopping criteria.Stop the iterative procedure if any of them is 

satisfied; otherwise, replace k by k+1 and return to step 3.

The LevenbergThe Levenberg--Marquardt MethodMarquardt Method



Deterministic MethodsDeterministic Methods

�� SteepestSteepest--DescentDescent Method:Method:

1k k k kα+ = +P P d

Iterative process:Iterative process:

where:where:

PP is the vector of parameters to be optimizedis the vector of parameters to be optimized

αα is the searchis the search--step sizestep size

dd is the direction of descentis the direction of descent

SS is the objective functionis the objective function

kk is the iteration numberis the iteration number

( )k kS= −∇d P



Deterministic MethodsDeterministic Methods

k=0

Make an initial guess
for xk

)(1 kk U xd −∇=+Calculate
)( kU x∇

k=k+1

11 ++ += kkkk dxx α

Calculate
kα

Calculate
)( kU x∇

Convergence?xk is the optimum Yes

No

1 - Maximum number
of iterations reached;
2 - U(xk) reached the
expected value;
3 - The gradient of
U(xk) reached the
expected value.

�� SteepestSteepest--DescentDescent Method:Method:



Deterministic MethodsDeterministic Methods

�� SteepestSteepest--DescentDescent Method:Method:

SLOW!!!!!!SLOW!!!!!!



Deterministic MethodsDeterministic Methods

�� Conjugate GradientConjugate Gradient Method:Method:

1k k k kα+ = +P P d

Iterative process:Iterative process:

where:where:

PP is the vector of parameters to be optimizedis the vector of parameters to be optimized

αα is the searchis the search--step sizestep size

dd is the direction of descentis the direction of descent

SS is the objective functionis the objective function

kk is the iteration numberis the iteration number

γγ is the conjugation coefficientis the conjugation coefficient

( ) 1k k k kS γ −= −∇ +d P d



Deterministic MethodsDeterministic Methods

�� Conjugate GradientConjugate Gradient Method:Method:

   k=0,  d0=0,

Make an initial guess
for xk

kkkk U dxd γ+−∇=+ )(1Calculate
)( kU x∇

k=k+1

11 ++ += kkkk dxx α

Calculate
kα

Calculate
)( kU x∇

Convergence?xk is the optimum Yes

No

1 - Maximum number
of iterations reached;
2 - U(xk) reached the
expected value;
3 - The gradient of
U(xk) reached the
expected value.
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Deterministic MethodsDeterministic Methods

�� Conjugate GradientConjugate Gradient Method:Method:

Faster than the Faster than the 

SteepestSteepest--Descent!Descent!



Deterministic MethodsDeterministic Methods

�� NewtonNewton’’ss Method:Method:

1k k k kα+ = +P P d

Iterative process:Iterative process:

where:where:

xx is the vector of parameters to be optimizedis the vector of parameters to be optimized

αα is the searchis the search--step sizestep size

HH is the matrix of 2is the matrix of 2ndnd order derivatives order derivatives –– Expensive in terms of Expensive in terms of 

computational cost!computational cost!

SS is the objective functionis the objective function

kk is the iteration numberis the iteration number

( )k k kS= − ∇d H P



Deterministic MethodsDeterministic Methods

�� NewtonNewton Method:Method:

k=0

Make an initial guess
for xk

Calculate
)(D),( 2 kk UU xx∇

k=k+1

11 ++ += kkkk dxx α

Calculate
kα

Calculate
)( kU x∇

Convergence?xk is the optimum Yes

No

1 - Maximum number
of iterations reached;
2 - U(xk) reached the
expected value;
3 - The gradient of
U(xk) reached the
expected value.

Calculate

[ ] ( )kkk UU xxd ∇−= −+ 121 )(D

)(D2 kU x



Deterministic MethodsDeterministic Methods

�� NewtonNewton’’ss Method:Method:

Faster than the Faster than the 

Conjugate Gradient!Conjugate Gradient!



Deterministic MethodsDeterministic Methods

�� BFGS (BroydenBFGS (Broyden--FletcherFletcher--GoldfarbGoldfarb--Shanno)Shanno) Method:Method:

•• QuasiQuasi--NewtonNewton method, similar to the DFP method, but less dependent on the method, similar to the DFP method, but less dependent on the 

searchsearch--step size choice.step size choice.

•• Uses an iterative approximation for the HessianUses an iterative approximation for the Hessian
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Deterministic MethodsDeterministic Methods
k=0, H=I

Make an initial guess
for xk

Calculate
)( kU x∇

k=k+1

11 ++ += kkkk dxx α

Calculate
kα

Calculate
)( kU x∇

Convergence?xk is the optimum Yes

No

1 - Maximum number
of iterations reached;
2 - U(xk) reached the
expected value;
3 - The gradient of
U(xk) reached the
expected value.
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Deterministic MethodsDeterministic Methods

�� BFGSBFGS Method:Method:

Faster than the Faster than the 

Conjugate Gradient!Conjugate Gradient!



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� GA (Genetic Algorithm) GA (Genetic Algorithm) andand DE (Differential Evolution)DE (Differential Evolution) Methods:Methods:

�� Based on DarwinBased on Darwin’’s model for natural selection of species.s model for natural selection of species.

•• Members of a certain population matches and have children. ThoseMembers of a certain population matches and have children. Those children are a children are a 

combination of the parentscombination of the parents’’ chromosomes.chromosomes.

•• The strongest members of the population will have more chances tThe strongest members of the population will have more chances to survive under a o survive under a 

certain environment.certain environment.

•• The combination of the chromosomes is called crossover.The combination of the chromosomes is called crossover.

•• Mutations can occur. They can be good or bad mutations.Mutations can occur. They can be good or bad mutations.



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� DEDE Method:Method:

•• Alternative to the Genetic Algorithm method.Alternative to the Genetic Algorithm method.

•• Proposed in 1995 by Proposed in 1995 by Kenneth Price and Rainer Storn from Berkeley.Kenneth Price and Rainer Storn from Berkeley.

�� The method initializes with a random generated random matrix The method initializes with a random generated random matrix PP which which 

contains N vector parameters contains N vector parameters PP

�� From the initial population matrix, generations are created untiFrom the initial population matrix, generations are created until the best l the best 

generation (optimum) is found.generation (optimum) is found.



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� DEDE Method:Method:

�� The next generation is created as:The next generation is created as:

( )1
1 2

k k
i i Fδ δ+ � �= + + −� �P P � � �

If If SS((PPk+1k+1) < ) < SS((PPkk)) PPk+1k+1 replaces replaces PPkk in the population matrixin the population matrix

If If SS((PPk+1k+1) > ) > SS((PPkk)) PPkk is kept in the population matrix and is kept in the population matrix and PPk+1 k+1 is discardedis discarded

wherewhere

αααααααα, , ββββββββ and and γγγγγγγγ are three randomly chosen members of the population matrix.are three randomly chosen members of the population matrix.

F is a weighting function which defines the F is a weighting function which defines the mutationmutation (0.5 < F < 1).(0.5 < F < 1).

kk is the generation counter.is the generation counter.

δδ11 and and δδ22 are delta Dirac functions that defines the are delta Dirac functions that defines the crossovercrossover..

11stst parentparent 22ndnd parentparent
Mutation includedMutation included



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� DEDE Method:Method:

�� The crossover is obtained as:The crossover is obtained as:

δδ11 ==
0, if R < CR0, if R < CR

1, if R > CR1, if R > CR

�� R is a random number with uniform distribution between 0 and 1R is a random number with uniform distribution between 0 and 1

�� CR is the crossover factor (0.5 < CR < 1)CR is the crossover factor (0.5 < CR < 1)

δδ22 ==
1, if R < CR1, if R < CR

0, if R > CR0, if R > CR

( )1
1 2

k k
i i Fδ δ+ � �= + + −� �P P � � �



k=0, n=population size

Generate population
matrix P

Choose ramdomly
three members of PDefine F (mutation)

Define  CR (crossover)

k=k+1

Generate a random
number R

Convergence?

best member is the
optimum

Yes

No

1 - Maximum number
of iterations reached;
2 - U(best member)
reachs the expected
value.
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Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� SA (Simulated Annealing)SA (Simulated Annealing) Method:Method:

�� Based on thermodynamics and solidification process of liquids anBased on thermodynamics and solidification process of liquids and metals.d metals.

Slow coolingSlow cooling Pure crystal is formed with minimum energy state.Pure crystal is formed with minimum energy state.

Fast cooling Fast cooling 

““quenchedquenched””

Polycrystalline or amorphous state is formed with Polycrystalline or amorphous state is formed with 

higher energy.higher energy.

�� Gradient methodsGradient methods ““Fast coolingFast cooling””. They can lead to a local minima.. They can lead to a local minima.



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� SASA Method:Method:

�� Boltzmann probability distribution:Boltzmann probability distribution:

�� The method can move uphill as well as downhill depending on the The method can move uphill as well as downhill depending on the probability probability 

of high energy states.of high energy states.
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Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� SASA Method:Method:

�� Iterative process is presented in the following papers:Iterative process is presented in the following papers:

•• CoranaCorana, A., , A., MarchesiMarchesi, M., Martini, C. e , M., Martini, C. e RidellaRidella, S., , S., ““Minimizing Multimodal Functions Minimizing Multimodal Functions 

of Continuous Variables with the of Continuous Variables with the ‘‘Simulated Annealing AlgorithmSimulated Annealing Algorithm’”’”, , ACM ACM 

Transactions on Mathematical SoftwareTransactions on Mathematical Software, vol. 13, pp. 262, vol. 13, pp. 262--280, 1987.280, 1987.

•• GoffeGoffe, W. L., Ferrier, G. D. e Rogers, J., , W. L., Ferrier, G. D. e Rogers, J., ““Global Optimization of Statistical Functions Global Optimization of Statistical Functions 

with Simulated Annealingwith Simulated Annealing””, , Journal of EconometricsJournal of Econometrics, vol. 60, pp. 65, vol. 60, pp. 65--99, 1994.99, 1994.

�� Excessive number of objective function evaluations!!!Excessive number of objective function evaluations!!!



m=number of variables
n=population size=m
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x=x0 and U(x0)
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Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� PS (Particle Swarm)PS (Particle Swarm) method:method:

•• Created in 1995 by an Electric Engineer (Created in 1995 by an Electric Engineer (RusselRussel EberhartEberhart) and a  Social) and a  Social--Psychologist Psychologist 

(James Kennedy) as an alternative to Genetic Algorithm.(James Kennedy) as an alternative to Genetic Algorithm.

•• Based on the social behavior of various species (including humanBased on the social behavior of various species (including humans).s).

•• Balances the individuality and sociability of individuals in ordBalances the individuality and sociability of individuals in order to find a optimum.er to find a optimum.

IndividualityIndividuality Chances to find alternatives placesChances to find alternatives places

ConvergenceConvergence

SociabilitySociability Learning process among the individualsLearning process among the individuals

Chances to find alternatives places. Individuals can find a Chances to find alternatives places. Individuals can find a 

local minimalocal minima



Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

�� PSPS method:method:

�� Update processUpdate process

( ) ( )
1 1

1
1 2

k k k
i i i

k k k k
i i i i i i g iα β β

+ +

+

= +

= + − + −

P P v

v v r p P r p P

IndividualityIndividuality SociabilitySociability
wherewhere

PPii is iis i--thth individual of the vector of parametersindividual of the vector of parameters

rr1i1i and and rr2i2i are are random numbers with uniform distribution between 0 and are are random numbers with uniform distribution between 0 and 11

ppii is the best value found for the vector is the best value found for the vector PPii

ppgg is the best value found for the entire populationis the best value found for the entire population

0 < 0 < αα < 1;  1 < < 1;  1 < ββ < 2< 2



k=0, n=population size
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Generate population
matrix P
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Evolutionary and Stochastic MethodsEvolutionary and Stochastic Methods

� PS method:



Hybrid MethodsHybrid Methods

�� Hybrid optimizer Hybrid optimizer –– version 1 (Martin, Colaversion 1 (Martin, Colaçço and Dulikravich)o and Dulikravich)
Design Variance 0

DFP

DE NM

Local Minimum

Bad Mutation

Stalls

Lost Generation

GA
Stalls

LM

SQP

Local 
Minimum

Local 
Minimum



Hybrid MethodsHybrid Methods

�� Hybrid optimizer Hybrid optimizer –– version 2 (Colaversion 2 (Colaçço and Dulikravich)o and Dulikravich)

Particle Swarm 
using Boltzmann 

probability 

Differential 
Evolution 

m% of the particles found a minima 

Improvement of the objective 

BFGS 
Method 

Non-improvement of 
the objective function 



Example 1 Example 1 -- GriewangkGriewangk’’s functions function

�� Multiple local minimaMultiple local minima



Example 1 Example 1 -- GriewangkGriewangk’’s functions function

�� Comparison: BFGS, DE, SA, PS, HybridComparison: BFGS, DE, SA, PS, Hybrid
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Example 2 Example 2 -- SchwefelSchwefel’’s functions function

�� Multiple local minimaMultiple local minima



Example 2 Example 2 -- SchwefelSchwefel’’s functions function

�� Comparison: BFGS, DE, SA, PS, HybridComparison: BFGS, DE, SA, PS, Hybrid
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Minimization of the Confidence Region

Maximize det (JTJ)
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By using the definition of the sensitivity matrix for the case 

involving a single sensor, each element Fm,n , m,n = 1, …, N, of 

the matrix  is given by

where I is the number of measurements and N is the number 
of unknown parameters.

Design Of Optimum ExperimentsDesign Of Optimum Experiments



Case 1. A large but fixed number of equally spaced measurements is 
available. 

Then, each element Fm,n can be written as

for m,n = 1, …, N 

where tf is the duration of the experiment and ∆t is the constant time interval 
between two consecutive measurements. Since the number of measurements, I, 
is fixed, we can choose to maximize the determinant of FI instead of maximizing 
the determinant of F, where the elements of FI are given by

for m,n = 1, …, N

F
m n

i

mi

I
i

n m nt

t

t

T

P

T

P
t

I
t

T
P

T
P

dt
f

f

, =
�



�
�

�



	
	

�



�
�

�



	
	 ≈

�



�
�

�



	
	

�



�
�

�



	
	

= =
� �

1

1 0
∆

∆
∂
∂

∂
∂

∂
∂

∂
∂

[ ]
,

F
I m n

m nt

t

t
T
P

T
P

dt
f

f

=
�



�
�

�



	
	

�



�
�

�



	
	

=
�

1

0

∂
∂

∂
∂

Design Of Optimum ExperimentsDesign Of Optimum Experiments
Special CasesSpecial Cases



Case 2. In addition to a large and fixed number of equally spaced 
measurements, the maximum value for the temperature in the region, Tmax, is 
known.

for m,n = 1,…,N

Note that the quantities inside parentheses are dimensionless. However, it is 
possible that T*, and not Tmax, is the variable suitable for the non-
dimensionalization of the temperature T, i.e.,

for m,n = 1, …, N
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and the design of optimum experiments is then based on the maximization of 
the determinant of the dimensionless form of FI:
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Case 3. Measurements of M sensors are available.
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[ ] [ ] )()()()()( 1 PVPPTYWPTYP −−+−−= − µµµµµµµµ TT
MAPS

Maximum a Posteriori Objective Function

Hypotheses:

• The errors are additive, with zero mean and normally 
distributed.
• The statistical parameters describing the errors are 
known.
• There are no errors in the independent variables.
• P is a random vector with known mean m and known 
covariance matrix V.
• P is distributed normally.

Sequential Parameter Sequential Parameter 
Estimation TechniqueEstimation Technique



0
)()()(

21
=

∂
∂

==
∂

∂
=

∂
∂

N

MAPMAPMAP
P

S

P

S

P

S PPP
�

0][2)]([2 1 =−−−− − PVPTYWJ µµµµT where J is the Sensitivity Matrix.

For uncorrelated measurements:

For the minimization of SMAP(P):

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

2

2
2

2
1

/10

/1

0/1

Iσ

σ

σ

�

W

Sequential Parameter Sequential Parameter 
Estimation TechniqueEstimation Technique



Linear Problems: J does not depend on P PJPT =)(

Nonlinear Problems:

0][2)]([2 1 =−−−− − PVPTYWJ µµµµT

][][ 111 µµµµ−−− ++= VYWJVJWJP TT

)(PJJ ≡ )()()( kkk PPJPTPT −+=

)}()]([{][ 1111 kkTTkk PVPTYWJVWJJPP −+−++= −−−+ µµµµ

Sequential Parameter Sequential Parameter 
Estimation TechniqueEstimation Technique



• Utilizes the measurements in a sequential manner in order to 

estimate the parameters. 

• Avoids matrix inversions.

• Permits the identification of improper mathematical models.

• Possible to identify if a sufficient number of transient 

measurements and if a sufficiently long experimental time have been 

used in the experiment.

Sequential Parameter Sequential Parameter 
Estimation TechniqueEstimation Technique



Step 1. Initialize the iterative procedure by setting the iteration index k to 0
and making �P =0 .

Step 2. Compute the estimate for the vector of unknown parameters sequentially,
 for i=0,…,(I-1), by  using
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Computational Algorithm For The Computational Algorithm For The 
Nonlinear CaseNonlinear Case



Step 3. Check convergence of the values estimated sequentially with all I  measurements

ε<−+ k
I

k
I PP 1

If the convergence criterion is not satisfied, increment k, make

k
I

k PP =

and return to step 2.

Computational Algorithm For The Computational Algorithm For The 
Nonlinear CaseNonlinear Case



1. Direct Problem
2. Inverse Problem
3. Sensitivity Problem
4. Adjoint Problem
5. Gradient Equation
6. Iterative Procedure
7. Stopping Criterion
8. Computational Algorithm

CONJUGATE GRADIENT METHOD WITH ADJOINT PROBLEM

Function EstimationFunction Estimation



Minimize: �
=

=
f

t

t
pmeasp

dttgtxTtYtgS
0

2}])(;,[-)({)]([

∞<�
=

dttg
f

t

t
p

0

2])([

• No assumption is made regarding 
the functional form of the unknown.

Hilbert Space of square-
integrable

functions in 0 < t < t f

where the standard-deviation of the measurement errors 
was assumed as constant and known.

Function EstimationFunction Estimation



• Iterative method

• Simple, straightforward and powerful

• Regularization obtained from the stopping criterion

(Iterative regularization)

• Parameter estimation and function estimation

• Linear and nonlinear inverse problems

• Capable of treating complex physical situations 

• Stable for small time steps

• Easy to program

• Permits the extension to more than one unknown

• Whole-domain

Conjugate Gradient MethodConjugate Gradient Method



Direction of Descent:

Conjugation Coefficient:

Gradient Direction
and

Search step size β k Sensitivity Problem
and

Adjoint Problem

Iterative Procedure: )()()(1
tdtgtg

kkk
p

k
p

β−=+

)()]([)( 1
tdtgStd

kkk
p

k −+∇= γ

�

�

=

−

=

∇

∇

=
f

f

t

t

k
p

t

t

k
p

dttgS

dttgS
k

0

21

0

2

}])([{

}])([{
γ

with γ 0 = 0 for k = 0

)]([ tgS
k
p

∇

Conjugate Gradient Method Conjugate Gradient Method 
(Fletcher(Fletcher--Reeves)Reeves)



gp(t) undergoes a variation 
ε∆gp(t) 

T(x,t) is perturbed by ε∆T(x,t)
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where Lε(gpε) and L(gp) are the operator forms of the direct 

problem, written for the perturbed [gp(t) + ε∆ gp(t)] and 
unperturbed gp(t) source-terms, respectively. 

Sensitivity ProblemSensitivity Problem
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Remark: Different numerical techniques can be used to compute 
βk. Alternatively, the expression above can be linearized before 
the minimization is performed in order to obtain a closed-form 
expression for βk.

Search Step SizeSearch Step Size
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AUGMENTED FUNCTIONAL

Lagrange Multiplier:
λ(x,t)
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Remark: The second integral term on the right-hand side is 
simplified with integration by parts and by utilizing the 
boundary and initial conditions of the sensitivity problem. The 
integral terms containing ∆T(x,t) in the resulting expression are 
then allowed to go to zero, in order to obtain the adjoint 
problem for the determination of the Lagrange Multiplier λ(x,t).
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Remark: Note that in the adjoint problem the value of the function 

λ(x,t) is given at the final time t = tf .  In the conventional initial 
value problem, the value of the function is specified at time t = 0.  

However, the final value problem can be transformed into an initial 

value problem by defining a new time variable given by τ = tf - t.

Adjoint ProblemAdjoint Problem
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Remark: Note that the gradient equation is null at the final time 
tf. Therefore, the initial guess used for gp(t) at t= tf is never 
changed by the iterative procedure of the conjugate gradient 
method for function estimation. The estimated function can 
deviate from the exact solution in a neighborhood of tf, if the 
initial guess used is too different from the exact gp(tf). This 
apparent drawback of the method can be easily overcome by 
using a final time larger than that of interest, so that the effects 
of the initial guess are not noticeable in the time interval that the 
solution is sought. Another approach to overcome this difficulty
is to repeat the solution of the inverse problem, by using as 
initial guess a previously estimated value for gp(t) in the 
neighborhood of tf. 

Gradient EquationGradient Equation



Errorless Measurements: ε is a small specified number

Measurements Containing Random Errors:

where σ = standard-deviation of the measurements
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Iterative RegularizationDiscrepancy Principle

Stopping CriterionStopping Criterion



Suppose an initial guess gp
0(t) is available for the function gp(t). Set k = 0 and 

then:
1. Solve the direct problem and compute T(x,t), based on gp

k(t).
2. Check the stopping criterion. Continue if not satisfied.
3. Knowing T(xmeas,t)  and  measured temperature Y(t), solve the adjoint 

problem and compute λ(0.5, t).
4. Knowing λ(0.5, t), compute S[gp

k(t)].
5. Knowing the gradient S[gp

k(t)],  compute gk and the direction of descent dk(t).
6. Solve the sensitivity problem to obtain ∆T [xmeas,t;dk(t)].
7. Knowing ∆T [xmeas,t;dk(t)], compute the search step size βk .
8. Knowing the search step size βk and the direction of descent dk(t), compute 

the new estimate gp
k+1(t) and return to step 1. 

Computational AlgorithmComputational Algorithm



SIMULATED MEASUREMENTS

σω+= exYY

where Yex = solution of the direct problem for an a priori
specified function or parameters

ω = random variable with normal distribution, zero mean 
and unitary standard deviation

σ = standard-deviation of the measurements

ApplicationsApplications
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Function Estimation
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Solve the inverse problem of estimating the boundary heat 
flux q(t). Assume that no information is available on the 
functional form of q(t), except that it belongs to the space of 
square integrable functions in the domain 0 < t < 1. Use for 
the inverse analysis 100 equally spaced transient 
measurements in 0 < t ≤ 1, of a sensor located at xmeas = 0. 
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ExampleExample

�� Comparison of two solution techniques for the inverse problem ofComparison of two solution techniques for the inverse problem of simultaneously simultaneously 

estimating the spatial variations of diffusion coefficients estimating the spatial variations of diffusion coefficients 

and source terms and source terms 
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Example 3Example 3

DIRECT PROBLEM

Known:

D(x) and µ(x)

Determine:
U(x,t)

INVERSE PROBLEM

Known:

Measurements of U(x,t)

Simultaneously Estimate:
D(x) and µ(x)



TEST-CASE
Heat Conduction – Steel

l* = 0.050 m
tf* = 60 s

50 measurements per sensor
Simulated measurements
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3  7833
m

kg=ρ
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  10 3
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RESULTS - CGM
Estimation of D(x) for Known µµµµ(x)
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RESULTS - CGM
Simultaneous estimation of µµµµ(x) and D(x) 

2 Non-intrusive sensors – Measurements with σ = 0.01 Ymax
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RESULTS - CGM
Simultaneous estimation of µµµµ(x) and D(x) 

10 Sensors – Measurements with σ = 0.01 Ymax
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RESULTS - TIKHONOV
Simultaneous estimation of µµµµ(x) and D(x) 

10 Sensors – Measurements with σ = 0.01 Ymax – α1 = 0
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RESULTS - TIKHONOV
Simultaneous estimation of µµµµ(x) and D(x) 

10 Sensors – Measurements with σ = 0.01 Ymax
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RESULTS - TIKHONOV
Simultaneous estimation of µµµµ(x) and D(x) 

10 Sensors – Measurements with σ = 0.01Ymax – α1 = 0.0001
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RESULTS - CGM
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