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Mathematical Formulation

2
0 T(xp) +gp(t) 5(3-0.5)= oT (x,1)

N0 <x<1,fort>0

dx’ ot

dT(0y) _

0 at x=0,fort>0
0x

dT(11)
0x

T(x,0) =0 fort=0,In0 <x<1

=0 at x=1,fort>0




Inverse Heat Transfer
Problem Concept

DIRECT PROBLEM

« Strength of the source term:
9,(%)

: ]

» Temperature field T(x,1)

INVERSE PROBLEM

» Temperature measurements
taken at a location x

meas

» Strength of the source term: g (1)




Classification Of Inverse
Heat Transfer Problems

With respect to the heat transfer mode:

* IHTP of conduction

* IHTP of convection (forced or natural)

« IHTP of surface radiation

« IHTP of radiation in participating medium
 IHTP of simultaneous conjugate modes
* IHTP of phase change




Classification Of Inverse
Heat Transfer Problems

With respect to the unknown quantity:

* IHTP of boundary conditions

 IHTP of thermophysical properties

« IHTP of initial condition

« IHTP of source term

* IHTP of geometric characteristics of a heated body




Direct Problem Versus
Inverse Problem

New Research Paradigm (Prof. J. BECK)

The results obtained from numerical
simulations and from experiments are not
simply compared a posteriori, but a close
synergism exists between experimental and
theoretical researchers during the course of
the study, in order to obtain the maximum of
iInformation regarding the physical problem
under picture.




Difficulties In The Solution Of
Inverse Heat Transfer Problems

A solution for a well-posed problem (Hadamard)
must satisfy the conditions of:
* existence
* Unigqueness
» stability with respect to the input data




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

The solution of inverse problems requires
its reformulation as well-posed problems.

* Integral equation approach.

* Series solution approach.

« Polynomial approach.

« Hyperbolization of the heat conduction equation.

» Space marching techniques together with filtering of the noisy input data
* lterative filtering techniques.

» Steady-state techniques.

» Beck’s sequential function specification method.

» Levenberg-Marquardt’s method for the minimization of the least-squares norm.
 Tikhonov’s regularization approach.

* lterative regularization methods for parameter and function estimations.
» Genetic algorithms.




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

The time domain over which measurements are used Iin
the inverse analysis may be used to classify the methods
of solution. Consider the estimation of the strength of the
heat-source term g,(i) in the time domain. Three different
possible time domains for the measurements used in the
estimation of g,(f) up to time f;include:

a.uptotimet.<t. =
b. up to time t. < t, plus few time steps.
c. the whole time domain0 < t< t,. =y




Criteria for the Evaluation
of IHTP Solution Procedures

 The predicted quantity should be accurate if the measured data are of
high accuracy.

« The method should be stable with respect to measurement errors.

» The method should have a statistical basis and permit various statistical
assumptions for the measurement errors.

» The method should not require the input data to be a priori smoothed.
» The method should be stable for small time steps or intervals. This
permits a better resolution of the time variation of the unknown quantity
than is permitted by large time steps.

» Temperature measurements from one or more sensors should be
permitted.

» The method should not require continuous first derivatives of unknown
functions. Furthermore, the method should be able to recover functions
containing jump discontinuities.




Criteria for the Evaluation
of IHTP Solution Procedures

» Knowledge of the precise starting time of the application of an unknown
surface heat flux or source term should not be required.

» The method should not be restricted to any fixed number of
measurements.

» The method should be able to treat complex physical situations,
including, among others, composite solids, moving boundaries,
temperature dependent properties, convective and radiative heat transfer,
combined modes of heat transfer, multi-dimensional problems and
irregular geometries.

» The method should be easy for computer programming.

» The computer cost should be moderate.

» The user should not have to be highly skilled in mathematics in order to
use the method.

* The method should permit extension to more than one unknown.




Minimization Techniques

Minimize: S=(Y-T)' (Y-T)

When the transient readings Y taken at times ¢,
i=1,...I of a single sensor are used in the inverse
analysis:

T
(Y-T) =(Y =T, , Y, ~T,,..,

I
S=(Y-1' (Y-T)=) ¥-T)’
i=1

Remark: Statistical hypotheses.




Parameter Estimation

The unknown function g,({) is approximated as:

where:C(t) are known basis functions
N is the number of basis functions used in the
approximation (known for the analysis)




Function Estimation

* No assumption is made regarding the functional form
of the unknown.

» Minimization is performed in an infinite dimensional
space of functions, or minimization is performed in a
finite dimensional space where Nis large, e.g.,

C(t) = 8(t), i=1,...}, N=1.

| = Number of measurements
N = Number of unknown parameters




Function Estimation




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

Remark: If the inverse heat transfer problem involves the
estimation of only few unknown parameters from transient
temperature measurements, the use of the ordinary least squares
norm can be stable. However, if the inverse problem involves the
estimation of a large number of parameters, such as the recovery
of the unknown transient strength of the heat source term g () at
times t, i=1,...,/, excursion and oscillation of the solution may
occur. In this case, (or stabilization) techniques are

required.




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

Tikhonov’'s Whole-Domain Reqularization

I I
Zeroth order: S[gp (7)] :Z (Y,-—T,-)2+ aOZ[gp (ti)]2
i=1 i=1

I -1
First order: (FESGIESY Y-T,)*+ 4 D L8 pti)- gp(l‘i)]2
i=1 (=1

o, and o, are the regularization parameters.




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

Beck’s Sequential Function Specification Technique

i+r—1

Slg, )= > (¥—Ty)*

S=1i

where ris the number of future measurements

Regularization is obtained from the least-squares averaging
capabilities and from the measurements taken at future time steps.




An Overview Of Solution Techniques
For Inverse Heat Transfer Problems

Alifanov’s lterative Reqularization

Regularization is obtained from the stopping criterion utilized
for the iterative procedure.




Parameter Estimation

Deterministic Methods

- Newton-Gauss’ Method

- Levenberg-Marquardt’s Method

- Steepest Descent Method

- Conjugate Gradient Method

- Newton’s Method

- Quasi-Newton Methods

Evolutionary and Stochastic Methods
- Genetic Algorithms

- Differential Evolution

- Particle Swarm

- Simulated Annealing

Hybrid Methods

Sequential Parameter Estimation Technigue




Newton-Gauss’ Method

Maximum Likelihood Objective Function

vaotheses:<

-

\.

Sy (P =[Y -T®)] W[Y - T(P)]

» The errors are additive, with zero mean and normally
distributed.

 The statistical parameters describing the errors are
Known.

» There are no errors in the independent variables.




Newton-Gauss’ Method

2
1/0'1

2

For uncorrelated measurements: A= /o,

For the minimization of S, (P):

VSP)=—2J' W[Y-T(P)] =0

where J is the Sensitivity Matrix.

ISy (P) _ oSy (P) _
oP oP,

_ ISy (P)_
OPy

0




Sensitivity Matrix And
Sensitivity Coefficients




How To Compute The
Sensitivity Coefficients ?

(i) Direct analytic solution
(i) Boundary value problem
(iif) Finite-difference approximation




(1) Direct Analytic Solution For
Determining Sensitivity Coefficients

The analytical solution for our test-problem at the measurement
position is given by:

! 2,
T(x )= j g ()t +2Z cos(,B X eos(0.54 ) _[ ¢’ " ()dr
=0

m meas
m=1

By substituting the strength of the source term g,(1) given by

into the equation above and differentiating the resulting expression with
respect to P;, we find the expression for the sensitivity coefficient for the
parameter P;as

m meas

! 2,
cos(,B X )eos(0.54 ) J' e C (1)dr




(ii) The Boundary Value Problem
Approach For Determining
The Sensitivity Coefficients

By differentiating the direct problem with respect to the
parameter P, after substituting g,({) in its parameterized form,
we obtain the sensitivity problem governing the sensitivity
coefficients J;(x,?) as

az.lj(x,t) 3J (x.1)

+Cj(t) 0(x—0.5)= Ja in0<x<1, fort>0
t

axz

at x =0, fort>0

at x =1, fort>0

fort=0, In0O<x<1




(1ii) Finite Difference Approximation
For Determining Sensitivity Coefficients




Linear Problems

2 J'WIY-T(P)]=0

J does not depend on P =)

P=J'wirlgtwy]




Newton-Gauss’ Method

2 J'WIY-T(P)]=0

N T(P)=T(®P")+]" P-P")

P — Pk L 3T W Y IT WY — T(P¥)))




Identifiability Condition

o

- Small magnitudes for the sensitivity coefficients
« Columns of the sensitivity matrix are linearly dependent




The Levenberg-Marquardt Method

k k k. —1.T

P P i w29 T Wy - TP

where AXis the damping parameter and QX is a diagonal matrix.

* The Levenberg-Marquardt Method is related to
approach.
« Compromise between steepest-descent method and Gauss' method.
« Simple, powerful and straightforward iterative procedure.
« Capable of treating complex physical situations.
« Easy to program.
 Stable and converges fast.




The levenberg-Marquardt method

Stopping Criteria

H(J")T[Y—T(P" )} <e,

where &, &, and &, are user prescribed tolerances and || . || is
the vector Euclidean norm.




The Levenberg-Marquardt Method

Suppose that temperature measurements Y=(Y,,Y,,...,Y)) are given at times ¢,
i=1,...,I. Also, suppose an initial guess PY is available for the vector of unknown
parameters P. Choose a value for 19, say, u= 0.001 and set k=0. Then,
Solve the direct heat transfer problem with the available estimate P¥in order to
obtain the temperature vector T(P%)=(T,,T,..., T).

Compute S(P*).

Compute the sensitivity matrix J¥ and then the matrix Wk .

Compute the new estimate P+

Solve the direct problem with the new estimate P**! in order to find T(P**1).
Then compute S(Pk+1)

If S(P~+1) > S(P ), replace u«* by 10u* and return to step 4.

If S(P*+1) < S(P¥), accept the new estimate P+ and replace u* by 0.1ukx.
Check the stopping criteria.Stop the iterative procedure if any of them is
satisfied; otherwise, replace k by k+1 and return to step 3.




Deterministic Methods

Method:

lterative process:

d* =-Vs(P")

where:
P is the vector of parameters to be optimized
« is the search-step size
d is the direction of descent
S is the objective function

k is the iteration number




Deterministic Methods

Method:

k=0
> > - k > Calculate
Make an initial guess Calculaze d VU (X") cu
for xk VU (x") o
1 - Maximum nurrberi '
of iterations reached;
2 - U(x¥) reached the
No = x* 4 ofd<

expected value;
3 - The gradient of
U(x¥) reached the
expected value.

Calculate < k=k+1
VU (x")

x* is the optimum Convergence?




Deterministic Methods

Method:




Deterministic Methods

Method:

lterative process:
d' =-VS(P*)+y'a""

where:

P is the vector of parameters to be optimized

« is the search-step size

d is the direction of descent

S is the objective function

Kk is the iteration number

yis the conjugation coefficient




Deterministic Methods

Method:

k=0, d0=0, }/0 =0
k+1 k k
Make an initial guess - Calculaie » d"' =-VUEX")+yd > Calculate
for xX VU(x") o
A
1 - Maximum number '
of iterations reached; ,
2 - U(x¥) reached the HVU (xk X‘
expected value; v = e T = x* + ofd*
3 - The gradient of HVU (x"_1 X‘
U(x¥) reached the
expected value.
y
x* is the optimum Calculate < k=k+1
VU (x")




Deterministic Methods

Method:

Faster than the

Steepest-Descent!




Deterministic Methods

Method:

lterative process:
d' =-H'VS(P*)
where:
X is the vector of parameters to be optimized
« is the search-step size

H is the matrix of 2"d order derivatives — Expensive in terms of

computational cost!
S is the objective function

k is the iteration number




Deterministic Methods

Method:

k=0
1
Make an initial guess > (k)alculatcj ’ M d = —[DzU (X")T VU (xk ) > Calculate
for xk VU("), DUX") a
A
1 - Maximum number '
of iterations reached;
2 - U(x¥) reached the
Calculate x = x* + afd*!

expected value;

3 - The gradient of DU (Xk)
U(x¥) reached the
expected value.
y
Calculate < k=k+1

x* is the optimum
VU (x")




Deterministic Methods

Method:

Faster than the

Conjugate Gradient!




Deterministic Methods

Method:

method, similar to the DFP method, but less dependent on the

search-step size choice.

Uses an iterative approximation for the Hessian

Hk =Hk—l+Mk—l+Nk—l




Deterministic Methods

k=0, H=|
Make an initial guess > Calcula;[(e <
for xX VU (x")

d“t = _HkVU(Xk)

2y BFGS Method:

> Calculate

a,k

d-! (Yk—l )/ H + H-'YH (dk—l )l

Nk—l —

(Yk—l )T dc!

Hk :Hk—l +Mk—l +Nk—1

A

- 1+(Yk—l)THk—1Yk—1 dk—l(dk—l)T
M = (Yk—l )Tdk—l

(dk—l)TYk—l

1 - Maximum nunmber

of iterations reached;
2 - U(x¥) reached the
expected value;

3 - The gradient of

U(x*) reached the
expected value.

x* is the optimum

Convergence?

Calculate
VU(x")

xM=x"+a

kdk+l

k=k+1




Deterministic Methods

Method:

Faster than the

Conjugate Gradient!




Evolutionary and Stochastic Methods

3 and Methods:

> Based on Darwin’s model for natural selection of species.

Members of a certain population matches and have children. Those children are a

combination of the parents’ chromosomes.

The strongest members of the population will have more chances to survive under a

certain environment.
The combination of the chromosomes is called crossover.

Mutations can occur. They can be good or bad mutations.




Evolutionary and Stochastic Methods

Method:
Alternative to the Genetic Algorithm method.
Proposed in 1995 by Kenneth Price and Rainer Storn from Berkeley.
2 The method initializes with a random generated random matrix P which

contains N vector parameters P

2> From the initial population matrix, generations are created until the best

generation (optimum) is found.




Evolutionary and Stochastic Methods

3 Method:

> The next generation is created as:

b e )

where
o, B and vy are three randomly chosen members of the population matrix.
F is a weighting function which defines the (0.5<F<1).
k is the generation counter.

o, and o, are delta Dirac functions that defines the
If S(P*+1) < S(Pk) ‘ P*+1 replaces P*in the population matrix

If S(Px+1) > S(Pk) ‘ Pkis kept in the population matrix and P+ is discarded




Evolutionary and Stochastic Methods

3 Method:

=> The crossover is obtained as:

5 = - 0,if R<CR - 1,ifR < CR

1,if R > CR 0, if R>CR

> R is a random number with uniform distribution between 0 and 1

> CR is the crossover factor (0.5 < CR < 1)




k=0, n=population size

Generate population
matrix P

Define F (mutation)

DE Method:

"| Define CR (crossover)

Choose ramdormly Generate a random
three menmbers of P number R
o, B,y
A
0,=0 v
es
0, =1
No
I v
o =1
Xf+1:§1xf+52[(l+F(B—'Y)]‘ 51 =0
=

X' replaces x“in P <« Yes
No
A v
k=k+1 < x“is keptin P
’\b @
Yes

v 1 - Maximum number
of iterations reached;
best memberis the 2 - Ubest membey
optimum reachs the expected

value.




Evolutionary and Stochastic Methods

3 Method:

> Based on thermodynamics and solidification process of liquids and metals.

Slow cooling ‘ Pure crystal is formed with minimum energy state.

Fast cooling Polycrystalline or amorphous state is formed with

)

“quenched” hlghel’ energy.

> Gradient methods ‘ “Fast cooling”. They can lead to a local minima.




Evolutionary and Stochastic Methods

3 Method:

> Boltzmann probability distribution:

2 The method can move uphill as well as downhill depending on the probability

of high energy states.




Evolutionary and Stochastic Methods

3 Method:

> lterative process is presented in the following papers:

Corana, A., Marchesi, M., Martini, C. e Ridella, S., “Minimizing Multimodal Functions
of Continuous Variables with the ‘Simulated Annealing Algorithm™”, ACM
Transactions on Mathematical Software, vol. 13, pp. 262-280, 1987.

Goffe, W. L., Ferrier, G. D. e Rogers, J., “Global Optimization of Statistical Functions
with Simulated Annealing”, Journal of Econometrics, vol. 60, pp. 65-99, 1994.

> Excessive number of objective function evaluations!!!




Define initial
m=number of variables temperature T;
n=population size=m _| termperature reducing o i=0; j=0; k=0 o i
Make a initial guess for ration RT; number of N;=0, w here i=1,....m o
x=x° and U(x°) cycles N_; number of
iterations N ,

Generate a random

Icul
Caleulate +No number R
P S uolr
SA Method: !
Yes
h 4
Generate a random X0=x" x! =x) +RV,
number R Objective function
goes dow n i
. ; — Calculate U(x")
Reject x «—No N=N,+1
Yes
v
x0=x1
Objecti\}e lemction No »
goes up
Yes
v
Convergence? Yes» xK is the optimum j=j+1
T Yes
- i v
Reduce the 1 - Maximum nurrber_
temperature of iterations reached; Caloul
2 - U(x¥) reachs the culate
T=T*"RT
expected value. F=N./N
ﬁ
Yes
2(r—0.4)]
k=k+1 - V,=V,|1+ (r ) <« No
0.4
No Yes

5 ‘
V:V,[1+w_




Evolutionary and Stochastic Methods

method:

Created in 1995 by an Electric Engineer (Russel Eberhart) and a Social-Psychologist

(James Kennedy) as an alternative to Genetic Algorithm.
Based on the social behavior of various species (including humans).

Balances the individuality and sociability of individuals in order to find a optimum.

I Individuality I Chances to find alternatives places
l Convergence

' Sociability ' Learning process among the individuals

l, Chances to find alternatives places. Individuals can find a
local minima




Evolutionary and Stochastic Methods

3 method:

> Update process

where
P. is i-th individual of the vector of parameters
r,, and r,, are are random numbers with uniform distribution between 0 and 1
p; is the best value found for the vector P,
p, Is the best value found for the entire population

O<a<1; 1<pf<2




k=0, n=population size
V=0
Generate population
matrix P

Define @

4 Define [

Generate random

P, is the optimum

f

Convergence?

1 - Maximum number
of iterations reached;
2 - U(p,) reachs the
expected value.

No

k=k+1 <+Yes

PS method:

vectors r,, and ry

A

Determine p; and p,

A

k+1
v, =

OtVf +:Br1i(pi _Xf)"'ﬂrzi(pg _Xf'c)

i=i+1

k+1 k+1

xM=x+v

i




Hybrid Methods

> Hybrid optimizer — version 1 (Martin, Colago and Dulikravich)

Design Variance 0

Local
M|n|mum

Local
Minimum
Local Minimum

Bad Mutation

Lost Generation




Hybrid Methods

> Hybrid optimizer — version 2 (Colaco and Dulikravich)

Mm% of the particles found a minima
Particle Swarm
using Boltzmann
probability

Differential
Improvement of the objective Evolution

Non-improvement of
the objective function




Example 1 - Griewangk’s function

> Multiple local minima

GRIEWANGKS function B GRIEWANGES function B GRIEVWANGK S function 8

I
i

Wk}
L

objective value

objective value
r-a

objective value

—

= MEa e
— S
a0

-500 " -500 - % 1




Example 1 - Griewangk’s function

> Comparison: BFGS, DE, SA, PS, Hybrid

ottt

Best value of object function
Best value of object function
Best value of object function

T I T I T I T I T I . T | T | T | T | N I T I T I T I T I
0 100 200 300 400 500 0 200 400 600 800 0 500 1000 1500 2000 2500
Number of function evaluations Number of function evaluations Number of function evaluations

DAL WU s

DR U s

Best value of object function
Best value of object function

T T T T T T 1 T T 1
0 1000 2000 3000 4000 0 400 800 1200 1600 2000
Number of function evaluations Number of function evaluations



Example 2 - Schwefel’s function

> Multiple local minima

SCHWEFE Ls function 7

-

-a00 -




Example 2 - Schwefel’s function

> Comparison: BFGS, DE, SA, PS, Hybrid

0.0E+0 —
C c S -2.0E+2
S -2.0E+2- S S -2.0E+
5 ! =
E] . 5 5 ]
5 5 B
2 4.0E+2 2 g 40E+2-
o [e] -
5 ] 5 5 :
g 3 g
T -6.0E+2 3 T -6.0E+2
m o m

-8.0E+2 -8.0E+2 -

T T T T T T T T T ] T [ T I T I T I T 1 T I T I T I T I ! 1
0 40 80 120 160 200 40 80 120 160 200 500 1000 1500 2000 2500

Number of function evaluations Number of function evaluations Number of function evaluations

0.0E+0

Best value of object function
Best value of object function

— 1 T T T T T T ' 1 T T T T T T T ]
0 400 800 1200 1600 2000 0 400 800 1200 1600
Number of function evaluations Number of function evaluations



Statistical Analysis

Covariance Matrix

cov(f’l, IA’I) cov(f’l, f’z)

COV(ﬁ f’) cov(ﬁz,f’z)

2°71

cov(}A’N , IA’I) cov(ﬁN , f’z)

99% Confidence Intervals =  JZESRILYS

Confidence Region =P [( 2= P) V_l(lA) —P)< Zi,

where Zzzv Is the chi-square distribution with N degrees of freedom.




Design Of Optimum Experiments

Minimization of the Confidence Region
Maximize det (J'J)

By using the definition of the sensitivity matrix for the case
iInvolving a single sensor, each element Fm’n .mn=1, ..., N, of

the matrix is given by

where /is the number of measurements and N is the number
of unknown parameters.




Design Of Optimum Experiments
Special Cases

Case 1. A large but fixed number of equally spaced measurements is
available.

Then, each element F,, can be written as

I} t
F _ 1 % )| 7% At dt for mn =1 I\
m,n At gp &Pn ; gl = 1y wuuy
=

i=1 m
where t;is the duration of the experiment and At is the constant time interval
between two consecutive measurements. Since the number of measurements, |,

is fixed, we can choose to maximize the determinant of F, instead of maximizing
the determinant of F, where the elements of F, are given by

formn=1, ..., N




Design Of Optimum Experiments
Special Cases

Case 2. In addition to a large and fixed number of equally spaced
measurements, the maximum value for the temperature in the region, 7, _,, is
known.

[Fl]m,n:t P P j{ g for m,n=1,...,N

f m n t=0 max m max

Note that the quantities inside parentheses are dimensionless. However, it is
possible that 7, and not T__, is the variable suitable for the non-
dimensionalization of the temperature T, i.e.,

N
d ]dt formn=1, ..., N

max




Design Of Optimum Experiments
Special Cases

and the design of optimum experiments is then based on the maximization of
the determinant of the dimensionless form of F;.

formn=1, ..., N

M f
(Pm 8%}(&%]{ for mn=1. .. N
1 T IP )\1" P J\T

m max




Sequential Parameter
Estimation Technique

Maximum a Posteriori Objective Function

S,up®) =[Y-T@®)] WY -T®)]+@-P) V' (u-P)

.
 The errors are additive, with zero mean and normally

distributed.

 The statistical parameters describing the errors are
Known.

» There are no errors in the independent variables.

vaotheses:<

* P is distributed normally.
\




Sequential Parameter
Estimation Technique

For uncorrelated measurements:

9S1ap®) _ 3yp®) __0Sy,p(®)

oP, oF, oP,

For the minimization of S;,,5(P):

0 B 70 @ V4 S EUA BRI I \where J is the Sensitivity Matrix.




Sequential Parameter
Estimation Technique

23 WIY=T(P)]-2V ' [u-P]=0
J does not depend on P =

P=( WI+V 1T wWy+v 'y

N T(P)=T®P")+]" P-P")

P P T wr e v T g Wiy -t v u - Py




Sequential Parameter
Estimation Technique

« Utilizes the measurements in a sequential manner in order to
estimate the parameters.

 Avoids matrix inversions.

» Permits the identification of improper mathematical models.

» Possible to identify if a sufficient number of transient
measurements and if a sufficiently long experimental time have been
used in the experiment.




Computational Algorithm For The
Nonlinear Case

Step 1. Initialize the iterative procedure by setting the iteration index & to O
and making P’ =pm.

Step 2. Conpute the estimate for the vector of unknown parameters sequentially,
for i=0,.. ,(I-1), by using

A=V.J

1Y+l
—1
A=J AW
—1
K=AA

Ea=Yg-

+1 +1 +1
Pip =B +KIE, (8 P

i+l [

T )

Vi =V, KJ Y




Computational Algorithm For The
Nonlinear Case

Step 3. Check convergence of the values estimated sequentially with all / measurements

k+1 k
- P

I<€

i

If the convergence criterion is not satisfied, increment k, make

k
— PI

and return to step 2.




Function Estimation

CONJUGATE GRADIENT METHOD WITH ADJOINT PROBLEM

Direct Problem

Inverse Problem
Sensitivity Problem
Adjoint Problem
Gradient Equation
lterative Procedure
Stopping Criterion
Computational Algorithm

1.
2.
3.
4.
S.
6.
/.
8.




Function Estimation

* No assumption is made regarding
the functional form of the unknown.

Hilbert Space of square-
integrable
functionsin0 <t < t;

5

f
Minimize: S[gp(t)]:J{Y(t)—T[xmeas,t;gp(t)]}zdt
=0

where the standard-deviation of the measurement errors
was assumed as constant and known.




Conjugate Gradient Method

* lterative method

» Simple, straightforward and powerful

» Regularization obtained from the stopping criterion
(Iterative regularization)

« Parameter estimation and function estimation

* Linear and nonlinear inverse problems

« Capable of treating complex physical situations

« Stable for small time steps

« Easy to program

* Permits the extension to more than one unknown

« Whole-domain




Conjugate Gradient Method
(Fletcher-Reeves)

lterative Procedure: g?l(l‘):gi(t)—ﬂkdk(f)

Direction of Descent: dk (1)= VS[gIIZ (1)]+ ykdk_l (1)

Ly
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Conjugation Coefficient:

Search step size ¥ Sensitivity Problem

and p and
Gradient Direction R [gp (1)] Adjoint Problem




Sensitivity Problem

g,(f) undergoes a variation mm) T(x0) is perturbed by eAT(x,1)
eAg,(1)

D

pe T (%)= lim

p -0

where L(g,.) and L(g,) are the operator forms of the direct
problem, written for the perturbed [g,(f) + €A g,(f)] and
unperturbed g,(f) source-terms, respectively.




Sensitivity Problem

32AT (x,1) IAT (x,1)
. +Agp(t) o(x—0.5)= 2y

in 0 < x <1, for >0

AT (0.1) _

0 atx =0, forr>0
ox

AT (L1) _

0 atx=1,fort>0
ox

AT(x,0)=0 forr=0,n0<x<1




Search Step Size

Ly

2
mipSie, " O1=mjn | yo-1x e o-pdt o] a
=0

Remark: Different numerical techniques can be used to compute
Bk. Alternatively, the expression above can be linearized before
the minimization is performed in order to obtain a closed-form

expression for k.




Search Step Size
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Search Step Size
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Adjoint Problem

AUGMENTED FUNCTIONAL

'y
S[g, 1= |
=0

(Y (1) = TLx, o128, (1)t +

Lagrange Multiplier: q
AMx, 1)

LYy 9°T T
j j A(x,1) —2+gp(t)5(x—0.5)—¥ dt dx
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Adjoint Problem

tf 1
Dag, S1g (1] = jo [ 02{T 5,858 » (O]~ Y (OJAT (x,) S(x = Xypeqy) dx
t=0 x=

2
J AT+Agp(t)5(x—0.5)—aA—T dx dt
dx? ot

Remark: The second integral term on the right-hand side is
simplified with integration by parts and by utilizing the
boundary and initial conditions of the sensitivity problem. The
Integral terms containing A 7(x,{) in the resulting expression are
then allowed to go to zero, in order to obtain the adjoint
problem for the determination of the Lagrange Multiplier A(x,1).




Adjoint Problem

0 A(x,1) N 9°A(x,1)

=0
ot 0x°

+2[T(x,t)—-Y ()] o(x—x

meas )
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0 A(0,1) _

0 atx=0,forO<t<t
dx f

dA(1,1) _

0 atx=1,forO<t<t
0 x f

X(x,tf):() fort:tf ,in0<x <1




Adjoint Problem

Remark: Note that in the adjoint problem the value of the function
Ax,t) is given at the final time = t,. In the conventional initial
value problem, the value of the function is specified at time t= 0.
However, the final value problem can be transformed into an initial
value problem by defining a new time variable given by 7=t - t.




Gradient Equation

In the process used to obtain the adjoint problem the following integral term is left:

Ly
Dyg, S8 p(D]= j A(0.5,1)Ag , (1) dt 0

=0
Since g,(f) belongs to the space of square-integrable functions in 0 < t < ;:

Ly
Dpg,Sle, 1= | VS[g,01Ag,(1)dr
=0

\A) [gp (1)]=1(0.5,1)




Gradient Equation

Remark: Note that the gradient equation is null at the final time
t. Therefore, the initial guess used for g (i) at t=t;is never
changed by the iterative procedure of the conjugate gradient
method for function estimation. The estimated function can
deviate from the exact solution in a neighborhood of ¢, if the
initial guess used is too different from the exact g,(t). This
apparent drawback of the method can be easily overcome by
using a final time larger than that of interest, so that the effects
of the initial guess are not noticeable in the time interval that the
solution is sought. Another approach to overcome this difficulty
IS to repeat the solution of the inverse problem, by using as
initial guess a previously estimated value for g,({) in the
neighborhood of t.




Stopping Criterion

S[gp(t)]<8

Errorless Measurements: € is a small specified number

Measurements Containing Random Errors:

‘Y(t) —T[x

o1, I)||=0O
g, 0]

medas

where o = standard-deviation of the measurements




Computational Algorithm

Suppose an initial guess g,%1) is available for the function g,(f). Set k= 0 and
then:
Solve the direct problem and compute 7(x,#), based on g ().
Check the stopping criterion. Continue if not satisfied.
Knowing T(x,.....f) and measured temperature Y({), solve the adjoint
problem and compute (0.5, i).
Knowing (0.5, f), compute S[g(#)]-
Knowing the gradient S[g, ()], compute g~ and the direction of descent dk({).
Solve the sensitivity problem to obtain AT [x,,..,t;dX(D)].
Knowing AT [x,.....1;d%(f)], compute the search step size .
Knowing the search step size ¥ and the direction of descent dX(f), compute
the new estimate g,**!(f) and return to step 1.




Applications

SIMULATED MEASUREMENTS

where Y, = solution of the direct problem for an a priori
specified function or parameters
@ = random variable with normal distribution, zero mean
and unitary standard deviation
o = standard-deviation of the measurements




Examples

Parameter Estimation versus Function Estimation

8p (t)=1+sinxt+cosxt+sin2xt +cos 27t




Examples
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Examples
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Examples

Exact
Estimated, Technique |

Estimated, Technique IV (t;=2.2)

Source Function




Examples

Solve the inverse problem of estimating the boundary heat
flux g(t). Assume that no information is available on the
functional form of g(f), except that it belongs to the space of
square integrable functions in the domain 0 < t< 1. Use for
the inverse analysis 100 equally spaced transient
measurements in 0 < t< 1, of a sensor located at x___. = 0.

mO<x<l1, for r>0

atx=0, for r>0

atx=1, for >0

fort=0, iIn0<x<1




Examples
Effect Of The Null Gradient
At The Final Time
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Examples
Effect Of The Null Gradient
At The Final Time
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Examples
Regularization Effect Of The
Discrepancy Principle
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Example

> Comparison of two solution techniques for the inverse problem of simultaneously
estimating the spatial variations of diffusion coefficients
and source terms

Conjugate Gradient Method with Adjoint Problem

AU (r,t¢
Tikhonov’s Regularization with Hybrid Optimizer [&(¢9) a(z ) =V [Dr)VU ]+ u(r)U

aU:O at x = 0 for > 0
Jd x
D(x)aU =1 at x =1 for >0
Jd x
U =0 for r =20 m 0 < x <1



Example 3

DIRECT PROBLEM INVERSE PROBLEM

Measurements of U(x,1)

:




Example 3

TEST-CASE
Heat Conduction — Steel
['=0.050 m
tr =60s
50 measurements per sensor
Simulated measurements

p =7833 "%3
°C
g°C

D, =54 %
*

W
3 . 5 ‘y
10
M m3°C




Example 3

RESULTS - CGM
Estimation of D(x) for Known u(x

2 Non-intrusive sensors — Errorless measurements

o — Exact

4 Estimated




Example 3 RESULTS - CGM

Estimation of D(x) for Khown u(x

10 Sensors — Errorless measurements

— e — Exact

— 4+ Estimated




Example 3

RESULTS - CGM
Estimation of D(x) for Known u(x

80 Sensors — Errorless measurements

—e— Exact
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Example 3 RESULTS - CGM

Estimation of D(x) for Khown u(x

80 Sensors — Errorless measurements

—e— Exact

—+—— Estimated




Example 3 RESULTS - CGM

Estimation of 1 x) for Khown

2 Non-intrusive sensors — Errorless measurements
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Example 3
RESULTS - CGM

Estimation of 1 x) for Khown

10 Sensors — Errorless measurements
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Example 3
RESULTS - CGM

Simultaneous estimation of

o — Exact
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Example 3 gesyirs. com

Simultaneous estimation of
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Example 3
RESULTS - TIKHONOV
Simultaneous estimation of #(x) and D(x

10 Sensors — Measurements withc=0.01 Y, — o,
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Exampl
d p € 3 RESULTS - TIKHONOV
Simultaneous estimation of #(x) and D(x)

10 Sensors — Measurements withc=0.01 Y, _,
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Exampl
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Example 3
RESULTS - CGM

Simultaneous estimation of
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Example 3
RESULTS - TIKHONOV
Simultaneous estimation of #(x) and D(x

2 Non-intrusive sensors — Measurements with ¢ =0.01 Y.,
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Example 3
RESULTS - CGM

Simultaneous estimation of

50 Sensors — Measurements with 6 =0.01 Y,
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Example 3
RESULTS - TIKHONOV

Simultaneous estimation of u(x) and D(x

50 Sensors — Measurements with 6 =0.01 Y,
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